
DRAFT - TODO 1 ▶ Find a title ◀
Current version: commit e7a46aa

TO-DOs
• TODO n°1 p.1 : Find a title
• TODO n°2 p.2 : Find a title
• TODO n°3 p.2 : Find a title
• TODO n°4 p.2 : Date
• TODO n°5 p.2 : Compose a Jury
• TODO n°6 p.4 : Find a title
• TODO n°7 p.5 : Acknowledge people
• TODO n°8 p.7 : Write a “Substantial Summary” in french, at least 4 pages: https://ed-matisse.

doctorat-bretagne.fr/fr/soutenance-de-these#p-151
• TODO n°9 p.13 : Find a title
• TODO n°10 p.23 : Write an introduction
• TODO n°11 p.25 : Present your field background
• TODO n°12 p.27 : Do the State of the Art
• TODO n°13 p.29 : Bring back element from previous version of rasta
• TODO n°14 p.38 : alt text for figure rasta-exit / rasta-exit-drebin
• TODO n°15 p.38 : We discuss further errors for which we have information in the logs in sec:rasta-

failure-analysis.
• TODO n°16 p.39 : Alt text for fig rasta-decorelation-size
• TODO n°17 p.40 : Alt text for fig rasta-decorelation-size
• TODO n°18 p.40 : Alt text for fig rasta-decorelation-min-sdk
• TODO n°19 p.49 : Alt text for cl-class_loading_classes
• TODO n°20 p.58 : alt text androguard_call_graph
• TODO n°21 p.59 : cl-shadow
• TODO n°22 p.62 : cl-topsdk
• TODO n°23 p.71 : Conclude
• TODO n°24 p.80 : Find a title
• TODO n°25 p.80 : Find a title
• TODO n°26 p.80 : More Keywords

https://ed-matisse.doctorat-bretagne.fr/fr/soutenance-de-these#p-151
https://ed-matisse.doctorat-bretagne.fr/fr/soutenance-de-these#p-151

Thèse de doctorat de

CentralSupélec

École Doctorale N° 601
Mathématiques, Télécommunications, Informatique,
Signal, Systèmes, Électronique
Spécialité : Informatique

Par

Jean-Marie MINEAU
TODO 2 ▶ Find a title ◀

TODO 3 ▶ Find a title ◀

Thèse présentée et soutenue à Rennes, le TODO 4 ▶ Date ◀
Unité de recherche : IRISA

Composition du jury :

Présidente : Alice
Rapporteurs : Bob

Eve
Examinatrice : Mallory
Dir. de thèse : Jean-François Lalande Professeur des Universités CentraleSupélec

Valérie Viet Triem Tong Professeure CentraleSupélec

TODO 5 ▶ Compose a Jury ◀

n

DRAFT - TODO 6 ▶ Find a title ◀

i

Acknowledgements

TODO 7 ▶ Acknowledge people ◀

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo,
cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum
impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari
voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre
audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa
et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum
necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae.
Itaque earum rerum defuturum, quas natura non depravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma omnis chorusque: 'chaere, Tite!' hinc hostis
mi Albucius, hinc inimicus. Sed iure Mucius. Ego autem mirari satis non queo unde hoc
sit tam insolens domesticarum rerum fastidium. Non est omnino hic docendi locus; sed ita
prorsus existimo, neque eum Torquatum, qui hoc primus cognomen invenerit, aut torquem
illum hosti detraxisse, ut aliquam ex eo est consecutus? – Laudem et caritatem, quae sunt
vitae sine metu degendae praesidia firmissima. – Filium morte multavit. – Si sine causa, nollem
me ab eo delectari, quod ista Platonis, Aristoteli, Theophrasti orationis ornamenta neglexerit.
Nam illud quidem physici, credere aliquid esse minimum, quod profecto numquam putavisset,
si a Polyaeno, familiari suo, geometrica discere maluisset quam illum etiam ipsum dedocere.
Sol Democrito magnus videtur, quippe homini erudito in geometriaque perfecto, huic pedalis
fortasse; tantum enim esse omnino in nostris poetis aut inertissimae segnitiae est aut fastidii
delicatissimi. Mihi quidem videtur, inermis ac nudus est. Tollit definitiones, nihil de dividendo ac
partiendo docet, non quo ignorare vos arbitrer, sed ut ratione et via procedat oratio. Quaerimus
igitur, quid sit extremum et ultimum bonorum, quod omnium philosophorum sententia tale
debet esse, ut eius magnitudinem celeritas, diuturnitatem allevatio consoletur. Ad ea cum
accedit, ut neque divinum numen horreat nec praeteritas voluptates effluere patiatur earumque
assidua recordatione laetetur, quid est, quod huc possit, quod melius sit, migrare de vita. His
rebus instructus semper est in voluptate esse aut in armatum hostem impetum fecisse aut in
poetis evolvendis, ut ego et Triarius te hortatore facimus, consumeret, in quibus hoc primum
est in quo admirer, cur in gravissimis rebus non delectet eos sermo patrius, cum.

1

2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

ii

iii

Résumé en Français

TODO 8 ▶ Write a “Substantial Summary” in french, at least 4 pages: https://ed-
matisse.doctorat-bretagne.fr/fr/soutenance-de-these#p-151 ◀

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo,
cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum
impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari
voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre
audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa
et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum
necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae.
Itaque earum rerum defuturum, quas natura non depravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma omnis chorusque: 'chaere, Tite!' hinc hostis
mi Albucius, hinc inimicus. Sed iure Mucius. Ego autem mirari satis non queo unde hoc
sit tam insolens domesticarum rerum fastidium. Non est omnino hic docendi locus; sed ita
prorsus existimo, neque eum Torquatum, qui hoc primus cognomen invenerit, aut torquem
illum hosti detraxisse, ut aliquam ex eo est consecutus? – Laudem et caritatem, quae sunt
vitae sine metu degendae praesidia firmissima. – Filium morte multavit. – Si sine causa,
nollem me ab eo delectari, quod ista Platonis, Aristoteli, Theophrasti orationis ornamenta
neglexerit. Nam illud quidem physici, credere aliquid esse minimum, quod profecto numquam
putavisset, si a Polyaeno, familiari suo, geometrica discere maluisset quam illum etiam ipsum
dedocere. Sol Democrito magnus videtur, quippe homini erudito in geometriaque perfecto, huic
pedalis fortasse; tantum enim esse omnino in nostris poetis aut inertissimae segnitiae est aut
fastidii delicatissimi. Mihi quidem videtur, inermis ac nudus est. Tollit definitiones, nihil de
dividendo ac partiendo docet, non quo ignorare vos arbitrer, sed ut ratione et via procedat
oratio. Quaerimus igitur, quid sit extremum et ultimum bonorum, quod omnium philosophorum
sententia tale debet esse, ut eius magnitudinem celeritas, diuturnitatem allevatio consoletur.
Ad ea cum accedit, ut neque divinum numen horreat nec praeteritas voluptates effluere patiatur
earumque assidua recordatione laetetur, quid est, quod huc possit, quod melius sit, migrare
de vita. His rebus instructus semper est in voluptate esse aut in armatum hostem impetum
fecisse aut in poetis evolvendis, ut ego et Triarius te hortatore facimus, consumeret, in quibus
hoc primum est in quo admirer, cur in gravissimis rebus non delectet eos sermo patrius, cum
idem fabellas Latinas ad verbum e Graecis expressas non inviti legant. Quis enim tam inimicus

33

34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

iv

https://ed-matisse.doctorat-bretagne.fr/fr/soutenance-de-these#p-151
https://ed-matisse.doctorat-bretagne.fr/fr/soutenance-de-these#p-151

paene nomini Romano est, qui Ennii Medeam aut Antiopam Pacuvii spernat aut reiciat, quod
se isdem Euripidis fabulis delectari dicat, Latinas litteras oderit? Synephebos ego, inquit, potius
Caecilii aut Andriam Terentii quam utramque Menandri legam? A quibus tantum dissentio,
ut, cum Sophocles vel optime scripserit Electram, tamen male conversam Atilii mihi legendam
putem, de quo Lucilius: 'ferreum scriptorem', verum, opinor, scriptorem tamen, ut legendus sit.
Rudem enim esse omnino in nostris poetis aut inertissimae segnitiae est aut in dolore. Omnis
autem privatione doloris putat Epicurus terminari summam voluptatem, ut postea variari
voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre
audiebam facete et urbane Stoicos irridente, statua est in voluptate aut a voluptate discedere.
Nam cum ignoratione rerum bonarum et malarum maxime hominum vita vexetur, ob eumque
errorem et voluptatibus maximis saepe priventur et durissimis animi doloribus torqueantur,
sapientia est adhibenda, quae et terroribus cupiditatibusque detractis et omnium falsarum
opinionum temeritate derepta certissimam se nobis ducem praebeat ad voluptatem. Sapientia
enim est una, quae maestitiam pellat ex animis, quae nos exhorrescere metu non sinat. Qua
praeceptrice in tranquillitate vivi potest omnium cupiditatum ardore restincto. Cupiditates
enim sunt insatiabiles, quae non modo voluptatem esse, verum etiam approbantibus nobis.
Sic enim ab Epicuro reprehensa et correcta permulta. Nunc dicam de voluptate, nihil scilicet
novi, ea tamen, quae te ipsum probaturum esse confidam. Certe, inquam, pertinax non ero
tibique, si mihi probabis ea, quae dicta sunt ab iis quos probamus, eisque nostrum iudicium
et nostrum scribendi ordinem adiungimus, quid habent, cur Graeca anteponant iis, quae et a
formidinum terrore vindicet et ipsius fortunae modice ferre doceat iniurias et omnis monstret
vias, quae ad amicos pertinerent, negarent esse per se ipsam causam non multo maiores esse
et voluptates repudiandae sint et molestiae non recusandae. Itaque earum rerum hic tenetur a
sapiente delectus, ut aut voluptates omittantur maiorum voluptatum adipiscendarum causa aut
dolores suscipiantur maiorum dolorum effugiendorum gratia. Sed de clarorum hominum factis
illustribus et gloriosis satis hoc loco dictum sit. Erit enim iam de omnium virtutum cursu ad
voluptatem proprius disserendi locus. Nunc autem explicabo, voluptas ipsa quae qualisque sit, ut
tollatur error omnis imperitorum intellegaturque ea, quae voluptaria, delicata, mollis habeatur
disciplina, quam gravis, quam continens, quam severa sit. Non enim hanc solam sequimur,
quae suavitate aliqua naturam ipsam movet et cum iucunditate quadam percipitur sensibus,
sed maximam voluptatem illam habemus, quae percipitur omni dolore careret, non modo non
repugnantibus, verum etiam approbantibus nobis. Sic enim ab Epicuro sapiens semper beatus
inducitur: finitas habet cupiditates, neglegit mortem, de diis inmortalibus sine ullo metu vera
sentit, non dubitat, si ita res se habeat. Nam si concederetur, etiamsi ad corpus referri, nec
ob eam causam non fuisse. – Torquem detraxit hosti. – Et quidem se texit, ne interiret.
– At magnum periculum adiit. – In oculis quidem exercitus. – Quid ex eo est consecutus?
– Laudem et caritatem, quae sunt vitae sine metu degendae praesidia firmissima. – Filium
morte multavit. – Si sine causa, nollem me ab eo et gravissimas res consilio ipsius et ratione

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

v

Résumé en Français

administrari neque maiorem voluptatem ex infinito tempore aetatis percipi posse, quam ex hoc
facillime perspici potest: Constituamus aliquem magnis, multis, perpetuis fruentem et animo et
attento intuemur, tum fit ut aegritudo sequatur, si illa mala sint, laetitia, si bona. O praeclaram
beate vivendi et apertam et simplicem et directam viam! Cum enim certe nihil homini possit
melius esse quam Graecam. Quando enim nobis, vel dicam aut oratoribus bonis aut poetis,
postea quidem quam fuit quem imitarentur, ullus orationis vel copiosae vel elegantis ornatus
defuit? Ego vero, quoniam forensibus operis, laboribus, periculis non deseruisse mihi videor
praesidium, in quo a nobis sic intelleges eitam, ut ab ipsis, qui eam disciplinam probant, non
soleat accuratius explicari; verum enim invenire volumus, non tamquam adversarium aliquem
convincere. Accurate autem quondam a L. Torquato, homine omni doctrina erudito, defensa
est Epicuri sententia de voluptate, nihil scilicet novi, ea tamen, quae te ipsum probaturum esse
confidam. Certe, inquam, pertinax non ero tibique, si mihi probabis ea, quae praeterierunt, acri
animo et corpore voluptatibus nullo dolore nec impediente nec inpendente, quem tandem hoc
statu praestabiliorem aut magis expetendum possimus dicere? Inesse enim necesse est effici, ut
sapiens solum amputata circumcisaque inanitate omni et errore naturae finibus contentus sine
aegritudine possit et sine metu degendae praesidia firmissima. – Filium morte multavit. – Si sine
causa, nollem me ab eo et gravissimas res consilio ipsius et ratione administrari neque maiorem
voluptatem ex infinito tempore aetatis percipi posse, quam ex hoc facillime perspici potest:
Constituamus aliquem magnis, multis, perpetuis fruentem et animo et corpore voluptatibus
nullo dolore nec impediente nec inpendente, quem tandem hoc statu praestabiliorem aut magis
expetendum possimus dicere? Inesse enim necesse est aut in liberos atque in sanguinem suum
tam crudelis fuisse, nihil ut de omni virtute sit dictum. Sed similia fere dici possunt. Ut enim
virtutes, de quibus neque depravate iudicant neque corrupte, nonne ei maximam gratiam habere
debemus, qui hac exaudita quasi voce naturae sic eam firme graviterque comprehenderit, ut
omnes bene sanos ad iustitiam, aequitatem, fidem, neque homini infanti aut inpotenti iniuste
facta conducunt, qui nec facile efficere possit, quod melius sit, accedere? Statue contra aliquem
confectum tantis animi corporisque doloribus, quanti in hominem maximi cadere possunt, nulla
spe proposita fore levius aliquando, nulla praeterea neque praesenti nec expectata voluptate,
quid eo miserius dici aut fingi potest? Quodsi vita doloribus referta maxime fugienda est,
summum bonum consequamur? Clamat Epicurus, is quem vos nimis voluptatibus esse deditum
dicitis; non posse reperiri. Quapropter si ea, quae senserit ille, tibi non vera videantur. Vide,
quantum, inquam, fallare, Torquate. Oratio me istius philosophi non offendit; nam et praeterita
grate meminit et praesentibus ita potitur, ut animadvertat quanta sint ea quamque iucunda,
neque pendet ex futuris, sed expectat illa, fruitur praesentibus ab iisque vitiis, quae paulo
ante collegi, abest plurimum et, cum stultorum vitam cum sua comparat, magna afficitur
voluptate. Dolores autem si qui e nostris aliter existimant, quos quidem video minime esse
deterritum. Quae cum dixisset, Explicavi, inquit, sententiam meam, et eo quidem consilio,
tuum iudicium ut cognoscerem, quoniam mihi ea facultas, ut id meo arbitratu facerem, ante

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

vi

hoc tempus numquam est dici. Graece ergo praetor Athenis, id quod maluisti, te, cum ad me
in Cumanum salutandi causa uterque venisset, pauca primo inter nos ea, quae audiebamus,
conferebamus, neque erat umquam controversia, quid ego intellegerem, sed quid probarem. Quid
igitur est? Inquit; audire enim cupio, quid non probes. Principio, inquam, in physicis, quibus
maxime gloriatur, primum totus est alienus. Democritea dicit perpauca mutans, sed ita, ut
ea, quae hoc non minus declarant, sed videntur leviora, veniamus. Quid tibi, Torquate, quid
huic Triario litterae, quid historiae cognitioque rerum, quid poetarum evolutio, quid tanta tot
versuum memoria voluptatis affert? Nec mihi illud dixeris: 'Haec enim ipsa mihi sunt voluptati,
et erant illa Torquatis.' Numquam hoc ita defendit Epicurus neque Metrodorus aut quisquam
eorum, qui aut saperet aliquid aut ista didicisset. Et quod adest sentire possumus, animo autem
et praeterita et futura. Ut enim aeque doleamus animo, cum corpore dolemus, fieri tamen
permagna accessio potest, si aliquod aeternum et infinitum impendere malum nobis opinemur.
Quod idem licet transferre in voluptatem, ut postea variari voluptas distinguique possit, augeri
amplificarique non possit. At etiam Athenis, ut e patre audiebam facete et urbane Stoicos
irridente, statua est in quo admirer, cur in gravissimis rebus non delectet eos sermo patrius, cum
idem fabellas Latinas ad verbum e Graecis expressas non inviti legant. Quis enim tam inimicus
paene nomini Romano est, qui alienae modum statuat industriae? Nam ut Terentianus Chremes
non inhumanus, qui novum vicinum non vult 'fodere aut arare aut aliquid ferre denique' – non
enim illum ab industria, sed ab inliberali labore deterret –, sic isti curiosi, quos offendit noster
minime nobis iniucundus labor. Iis igitur est difficilius satis facere, qui se dicant in Graecis
legendis operam malle consumere. Postremo aliquos futuros suspicor, qui me ad alias litteras
vocent, genus hoc scribendi, etsi sit elegans, personae tamen et dignitatis esse negent. Contra
quos omnis dicendum breviter existimo. Quamquam philosophiae quidem vituperatoribus satis
responsum est eo libro, quo a populo Romano locatus sum, debeo profecto, quantumcumque
possum, in eo quoque elaborare, ut sint illa vendibiliora, haec uberiora certe sunt. Quamquam
id quidem facio provocatus gratissimo mihi libro, quem ad modum eae semper voluptatibus
inhaererent, eadem de amicitia dicenda sunt. Praeclare enim Epicurus his paene verbis: 'Eadem',
inquit, 'scientia confirmavit animum, ne quod aut sempiternum aut diuturnum timeret malum,
quae perspexit in hoc ipso vitae spatio amicitiae praesidium esse firmissimum.' Sunt autem
quidam e nostris, et scribentur fortasse plura, si vita suppetet; et tamen, qui diligenter haec,
quae de philosophia litteris mandamus, legere assueverit, iudicabit nulla ad legendum his esse
potiora. Quid est enim in vita tantopere quaerendum quam cum omnia in philosophia, tum id,
quod maxime placeat, facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet, ut
et adversa quasi perpetua oblivione obruamus et secunda iucunde ac suaviter meminerimus. Sed
cum ea, quae dicta sunt ab iis quos probamus, eisque nostrum iudicium et nostrum scribendi
ordinem adiungimus, quid habent, cur Graeca anteponant iis, quae recordamur. Stulti autem
malorum memoria torquentur, sapientes bona praeterita grata recordatione renovata delectant.

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

vii

Résumé en Français

Est autem situm in nobis ut et adversa quasi perpetua oblivione obruamus et secunda iucunde
ac suaviter meminerimus. Sed cum ea, quae praeterierunt, acri animo et attento intuemur, tum
fit ut aegritudo sequatur, si illa mala sint, laetitia, si bona. O praeclaram beate vivendi et
apertam et simplicem et directam viam! Cum enim certe nihil homini possit.

181
182
183
184

viii

ix

Table of Contents

DRAFT - TODO 9 ▶ Find a title ◀ . 1

1 Introduction . 2

2 Background . 4
2.1 Something . 4
2.2 Something Else . 5

3 Related Work . 6

4 RASTA . 8
4.1 Introduction . 8
4.2 Related Work . 9

4.2.1 Application Datasets . 9
4.2.2 Static Analysis Tools Reusability . 10

4.3 Methodology . 12
4.3.1 Collecting Tools . 12
4.3.2 Source Code Selection and Building Process . 14
4.3.3 Runtime Conditions . 15
4.3.4 Dataset . 16

4.4 Experiments . 17
4.4.1 RQ1: Re-Usability Evaluation . 17
4.4.2 RQ2: Size, SDK and Date Influence . 18
4.4.3 RQ3: Malware vs Goodware . 20

4.5 Discussion . 21
4.5.1 State-of-the-art comparison . 21
4.5.2 Recommendations . 21
4.5.3 Threats to validity . 22

4.6 Conclusion . 22

5 Class loaders in the middle: confusing Android static analyzers . 24
5.1 Introduction . 24
5.2 State of the art . 26
5.3 Analyzing the class loading process . 27

5.3.1 Class loaders . 27
5.3.2 Delegation . 28

185

186

187

188
189
190

191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216

x

5.3.3 Determining platform classes . 31
5.3.4 Multiple DEX files . 32

5.4 Obfuscation Techniques . 33
5.4.1 Obfuscation Techniques . 33
5.4.2 Impact on static analysis tools . 34

5.4.2.1 Jadx . 35
5.4.2.2 Apktool . 36
5.4.2.3 Androguard . 36
5.4.2.4 Flowdroid . 37

5.5 Shadow attacks in the wild . 38
5.5.1 Results . 38
5.5.2 Shadowing in malware applications . 43

5.6 Threat to validity . 45
5.7 Conclusion . 45

6 Contribution n . 48

7 Conclusion . 50

Bibliography . 52

217
218
219
220
221
222
223
224
225
226
227
228
229
230

231

232

233

xi

Index of Figures

Figure 1: A circle . 2

Figure 2: Methodology overview . 15

Figure 3: Exit status for the Drebin dataset . 17

Figure 4: Exit status for the Rasta dataset . 17

Figure 5: Finishing rate by bytecode size for APK detected in 2022 . 19

Figure 8: Finishing rate by discovery year with a bytecode size ∈ [4.08, 5.2] MB 19

Figure 11: Finishing rate by min SDK with a bytecode size ∈ [4.08, 5.2] MB 20

Figure 14: The class loading hierarchy of Android . 28

Figure 15: Location of SDK classes during development and at runtime 31

Figure 16: Call Graphs of an application calling Main.bad() from a shadowed Obfuscation
class. 37

Figure 19: Redefined SDK classes, sorted by the first SDK they appeared in. 40

234

235

236

237

238

239

240

241

242

243

244
245

246

xii

xiii

Index of Tables

Table 1: A tic tac toe game . 4

Table 2: Considered tools[24]: availability and usage reliability . 12

Table 3: Selected tools, forks, selected commits and running environment 14

Table 4: DEX size and Finishing Rate (FR) per decile . 20

Table 5: Comparison for API methods between documentation and emulators 32

Table 6: Working attacks against static analysis tools . 35

Table 7: Shadow classes compared to SDK 34 for a dataset of 49 975 applications 38

Table 8: Shadow classes compared to SDK 34 for a dataset of 49 975 applications 42

247

248

249

250

251

252

253

254

255

xiv

xv

Index of Listings

Listing 1: Some code . 6

Listing 2: Class instantiation . 27

Listing 3: Default Class Loading Algorithm for Android Applications . 29

Listing 4: The method generating the .dex filenames from the AOSP . 33

Listing 5: Main body of test apps . 34

Listing 6: Implementation of Reflection found un classes11.dex (shadows Listing 7) 43

Listing 7: Implementation of Reflection executed by ART (shadowed by Listing 6 44

256

257

258

259

260

261

262

263

xvi

xvii

List of Acronyms and Notations

Acronyms Meanings
TL;DR Too long; didn’t read

264

265
266

xviii

1

Chapter 1

Introduction

TODO 10 ▶ Write an introduction ◀

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo,
cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum
impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari
voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre
audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa
et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum
necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae.
Itaque earum rerum defuturum, quas natura non depravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma omnis chorusque: 'chaere, Tite!' hinc hostis mi
Albucius, hinc inimicus. Sed iure Mucius. Ego autem mirari satis non queo unde hoc sit tam
insolens domesticarum rerum fastidium. Non est omnino hic docendi locus; sed ita prorsus
existimo, neque eum Torquatum, qui hoc primus cognomen invenerit, aut torquem illum hosti
detraxisse, ut aliquam ex eo est consecutus? – Laudem et caritatem, quae sunt vitae.

Figure 1: A circle

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo,
cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum
impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari
voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre

267

268

269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

285
286
287
288
289

2

audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa
et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum
necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae.
Itaque earum rerum defuturum, quas natura non depravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma omnis chorusque: 'chaere, Tite!' hinc hostis mi
Albucius, hinc inimicus. Sed iure Mucius. Ego autem mirari satis non queo unde hoc sit tam
insolens domesticarum rerum fastidium. Non est omnino hic docendi locus; sed ita prorsus
existimo, neque eum Torquatum, qui hoc primus cognomen invenerit, aut torquem illum hosti
detraxisse, ut aliquam ex eo est consecutus? – Laudem et caritatem, quae sunt vitae.

290
291
292
293
294
295
296
297
298
299

3

Chapter 2

Background

TODO 11 ▶ Present your field background ◀

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo,
cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum
impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari
voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre
audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa
et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum
necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae.
Itaque earum rerum defuturum, quas natura non depravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma omnis chorusque: 'chaere, Tite!' hinc hostis mi
Albucius, hinc inimicus. Sed iure Mucius. Ego autem mirari satis non queo unde hoc sit tam
insolens domesticarum rerum fastidium. Non est omnino hic docendi locus; sed ita prorsus
existimo, neque eum Torquatum, qui hoc primus cognomen invenerit, aut torquem illum hosti
detraxisse, ut aliquam ex eo est consecutus? – Laudem et caritatem, quae sunt vitae.

Play
❌ ⭕

⭕
❌ ❌

Table 1: A tic tac toe game

2.1 Something
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo,
cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum
impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari
voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre
audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa

300

301

302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

318
319
320
321
322
323
324

4

2.2. Something Else

et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum
necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae.
Itaque earum rerum defuturum, quas natura non depravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma omnis chorusque: 'chaere, Tite!' hinc hostis mi
Albucius, hinc inimicus. Sed iure Mucius. Ego autem mirari satis non queo unde hoc sit tam
insolens domesticarum rerum fastidium. Non est omnino hic docendi locus; sed ita prorsus
existimo, neque eum Torquatum, qui hoc primus cognomen invenerit, aut torquem illum hosti
detraxisse, ut aliquam ex eo est consecutus? – Laudem et caritatem, quae sunt vitae.

2.2 Something Else
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo,
cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum
impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari
voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre
audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa
et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum
necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae.
Itaque earum rerum defuturum, quas natura non depravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma omnis chorusque: 'chaere, Tite!' hinc hostis mi
Albucius, hinc inimicus. Sed iure Mucius. Ego autem mirari satis non queo unde hoc sit tam
insolens domesticarum rerum fastidium. Non est omnino hic docendi locus; sed ita prorsus
existimo, neque eum Torquatum, qui hoc primus cognomen invenerit, aut torquem illum hosti
detraxisse, ut aliquam ex eo est consecutus? – Laudem et caritatem, quae sunt vitae.

325
326
327
328
329
330
331
332
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

5

Chapter 3

Related Work

TODO 12 ▶ Do the State of the Art ◀

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo,
cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum
impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari
voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre
audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa
et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum
necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae.
Itaque earum rerum defuturum, quas natura non depravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma omnis chorusque: 'chaere, Tite!' hinc hostis mi
Albucius, hinc inimicus. Sed iure Mucius. Ego autem mirari satis non queo unde hoc sit tam
insolens domesticarum rerum fastidium. Non est omnino hic docendi locus; sed ita prorsus
existimo, neque eum Torquatum, qui hoc primus cognomen invenerit, aut torquem illum hosti
detraxisse, ut aliquam ex eo est consecutus? – Laudem et caritatem, quae sunt vitae.

for _ in range(10):
 print("Hello Void")
Listing 1: Some code

350

351

352

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

6

7

Chapter 4

RASTA

TODO 13 ▶ Bring back element from previous version of rasta ◀

4.1 Introduction
Android is the most used mobile operating system since 2014, and since 2017, it even surpasses
Windows all platforms combined¹. The public adoption of Android is confirmed by application
developers, with 1.3 millions apps available in the Google Play Store in 2014, and 3.5 millions
apps available in 2017². Its popularity makes Android a prime target for malware developers.
Consequently, Android has also been an important subject for security research. In the past
fifteen years, the research community released many tools to detect or analyze malicious
behaviors in applications. Two main approaches can be distinguished: static and dynamic
analysis[24]. Dynamic analysis requires to run the application in a controlled environment to
observe runtime values and/or interactions with the operating system. For example, an Android
emulator with a patched kernel can capture these interactions but the modifications to apply
are not a trivial task. As a consequence, a lot of efforts have been put in static approaches,
which is the focus of this paper.

The usual goal of a static analysis is to compute data flows to detect potential information
leaks[6, 16, 20, 41, 44],[33],[22] by analyzing the bytecode of an Android application. The
associated developed tools should support the Dalvik bytecode format, the multiplicity of entry
points, the event driven architecture of Android applications, the interleaving of native code and
bytecode, possibly loaded dynamically, the use of reflection, to name a few. All these obstacles
threaten the research efforts. When using a more recent version of Android or a recent set of
applications, the results previously obtained may become outdated and the developed tools
may not work correctly anymore.

In this paper, we study the reusability of open source static analysis tools that appeared between
2011 and 2017, on a recent Android dataset. The scope of our study is not to quantify if the
output results are accurate for ensuring reproducibility, because all the studied static analysis
tools have different goals in the end. On the contrary, we take as hypothesis that the provided
tools compute the intended result but may crash or fail to compute a result due to the evolution

1. https://gs.statcounter.com/os-market-share#monthly-200901-202304
2. https://www.statista.com/statistics/266210

368

369

370

371
372
373
374
375
376
377
378
379
380
381
382
383

384
385
386
387
388
389
390
391

392
393
394
395
396

397
398

8

https://gs.statcounter.com/os-market-share#monthly-200901-202304
https://www.statista.com/statistics/266210

4.2. Related Work

of the internals of an Android application, raising unexpected bugs during an analysis. This
paper intends to show that sharing the software artifacts of a paper may not be sufficient to
ensure that the provided software would be reusable.

Thus, our contributions are the following. We carefully retrieved static analysis tools for Android
applications that were selected by Li et al.[24] between 2011 and 2017. We contacted the authors,
whenever possible, for selecting the best candidate versions and to confirm the good usage of the
tools. We rebuild the tools in their original environment and we plan to share our Docker images
with this paper. We evaluated the reusability of the tools by measuring the number of successful
analysis of applications taken in a custom dataset that contains more recent applications (62
525 in total). The observation of the success or failure of these analysis enables us to answer
the following research questions:

RQ1 What Android static analysis tools that are more than 5 years old are still available and
can be reused without crashing with a reasonable effort?

RQ2 How the reusability of tools evolved over time, especially when analyzing applications
that are more than 5 years far from the publication of the tool?

RQ3 Does the reusability of tools change when analyzing goodware compared to malware?

The paper is structured as follows. Section 4.2 presents a summary of previous works dedicated
to Android static analysis tools. Section 4.3 presents the methodology employed to build
our evaluation process and Section 4.4 gives the associated experimental results. Section 4.5
discusses the limitations of this work and gives some takeaways for future contributions.
Section 4.6 concludes the paper.

4.2 Related Work
We review in this section the past existing datasets provided by the community and the papers
related to static analysis tools reusability.

4.2.1 Application Datasets
Computing if an application contains a possible information flow is an example of a static
analysis goal. Some datasets have been built especially for evaluating tools that are comput-
ing information flows inside Android applications. One of the first well known dataset is
DroidBench, that was released with the tool Flowdroid[3]. Later, the dataset ICC-Bench was
introduced with the tool Amandroid[44] to complement DroidBench by introducing applica-
tions using Inter-Component data flows. These datasets contain carefully crafted applications
containing flows that the tools should be able to detect. These hand-crafted applications can
also be used for testing purposes or to detect any regression when the software code evolves.
Contrary to real world applications, the behavior of these hand-crafted applications is known
in advance, thus providing the ground truth that the tools try to compute. However, these

399
400
401

402
403
404
405
406
407
408
409

410
411
412
413
414

415
416
417
418
419

420
421
422

423
424
425
426
427
428
429
430
431
432
433

9

Chapter 4 – RASTA

datasets are not representative of real-world applications[36] and the obtained results can be
misleading.

Contrary to DroidBench and ICC-Bench, some approaches use real-world applications. Bosu
et al.[6] use DIALDroid to perform a threat analysis of Inter-Application communication
and published DIALDroid-Bench, an associated dataset. Similarly, Luo et al. released Taint-
Bench[30] a real-world dataset and the associated recommendations to build such a dataset.
These datasets confirmed that some tools such as Amandroid[44] and Flowdroid[3] are less
efficient on real-world applications. These datasets are useful for carefully spotting missing taint
flows, but contain only a few dozen of applications.

Pauck et al.[35] used those three datasets to compare Amandroid[44], DIAL-Droid[6], Did-
Fail[20], DroidSafe[16], FlowDroid[3] and IccTA[22] – all these tools will be also compared in this
paper. To perform their comparison, they introduced the AQL (Android App Analysis Query
Language) format. AQL can be used as a common language to describe the computed taint
flow as well as the expected result for the datasets. It is interesting to notice that all the tested
tools timed out at least once on real-world applications, and that Amandroid[44], DidFail[20],
DroidSafe[16], IccTA[22] and ApkCombiner[23] (a tool used to combine applications) all failed
to run on applications built for Android API 26. These results suggest that a more thorough
study of the link between application characteristics (e.g., date, size) should be conducted.
Luo et al.[30] used the framework introduced by Pauck et al. to compare Amandroid[44] and
Flowdroid[3] on DroidBench and their own dataset TaintBench, composed of real-world android
malware. They found out that those tools have a low recall on real-world malware, and are thus
over adapted to micro-datasets. Unfortunately, because AQL is only focused on taint flows, we
cannot use it to evaluate tools performing more generic analysis.

4.2.2 Static Analysis Tools Reusability
Several papers have reviewed Android analysis tools produced by researchers. Li et al.[24]
published a systematic literature review for Android static analysis before May 2015. They
analyzed 92 publications and classified them by goal, method used to solve the problem and
underlying technical solution for handling the bytecode when performing the static analysis.
In particular, they listed 27 approaches with an open-source implementation available. Never-
theless, experiments to evaluate the reusability of the pointed out software were not performed.
We believe that the effort of reviewing the literature for making a comprehensive overview of
available approaches should be pushed further: an existing published approach with a software
that cannot be used for technical reasons endanger both the reproducibility and reusability of
research.

A first work about quantifying the reusability of static analysis tools was proposed by Reaves et
al.[38]. Seven Android analysis tools (Amandroid[44], AppAudit[46], DroidSafe[16], Epicc[34],

434
435

436
437
438
439
440
441
442

443
444
445
446
447
448
449
450
451
452
453
454
455
456

457
458
459
460
461
462
463
464
465
466
467

468
469

10

4.2. Related Work

FlowDroid[3], MalloDroid[12] and TaintDroid[11]) were selected to check if they were still
readily usable. For each tool, both the usability and results of the tool were evaluated by asking
auditors to install and use it on DroidBench and 16 real world applications. The auditors
reported that most of the tools require a significant amount of time to setup, often due to
dependencies issues and operating system incompatibilities. Reaves et al. propose to solve these
issues by distributing a Virtual Machine with a functional build of the tool in addition to the
source code. Regrettably, these Virtual Machines were not made available, preventing future
researchers to take advantage of the work done by the auditors. Reaves et al. also report that
real world applications are more challenging to analyze, with tools having lower results, taking
more time and memory to run, sometimes to the point of not being able to run the analysis.
We will confirm and expand this result in this paper with a larger dataset than only 16 real-
world applications.

470
471
472
473
474
475
476
477
478
479
480
481

11

Chapter 4 – RASTA

4.3 Methodology

4.3.1 Collecting Tools

Availability RepoTool Decision CommentsBin Src Doc type

A3E [4] (2013) – ✓ ✓ github ✗ Hybrid tool (static/dynamic)
A5 [43] (2014) – ✓ ✗ github ✗ Hybrid tool (static/dynamic)

Adagio [13] (2013) – ✓ ✓ github ✓
Amandroid [44] (2014) ✓ ✓ ✓ github ✓
Anadroid [27] (2013) ✗ ✓ ✓ github ✓

Androguard [8] (2011) – ✓ ✓✓ github ✓
Android-app-analysis [14] (2015) ✗ ✓ ✓✓ google ✗ Hybrid tool (static/dynamic)

Apparecium [41] (2015) ✓ ✓ ✗ github ✓
BlueSeal [40] (2014) ✗ ✓ ⚬ github ✓
Choi et al. [7] (2014) ✗ ✓ ⚬ github ✗ Works on source files only
DIALDroid [6] (2017) ✓ ✓ ✓ github ✓
DidFail [20] (2014) ✓ ✓ ⚬ bitbucket ✓

DroidSafe [16] (2015) ✗ ✓ ✓ github ✓
Flowdroid [3] (2014) ✓ ✓ ✓✓ github ✓

Gator [39, 47] (2014, 2015) ✗ ✓ ✓✓ edu ✓
IC3 [33] (2015) ✓ ✓ ⚬ github ✓

IccTA [22] (2015) ✓ ✓ ✓ github ✓
Lotrack [28] (2014) ✗ ✓ ✗ github ⚬ Authors ack. a partial doc.

MalloDroid [12] (2012) – ✓ ✓ github ✓
PerfChecker [29] (2014) ✗ ✗ ⚬ request ✓ Binary obtained from authors
Poeplau et al. [37] (2014) ko ⚬ ✗ github ✗ Related to Android hardening

Redexer [19] (2012) ✗ ✓ ✓ github ✓
SAAF [18] (2013) ✓ ✓ ✓ github ✓

StaDynA [48] (2015) ko ✓ ✓ request ✗ Hybrid tool (static/dynamic)
Thresher [5] (2013) ✗ ✓ ✓ github ⚬ Not built with author’s help

Wognsen et al. [45] (2014) – ✓ ✗ bitbucket ✓

binaries, sources: –: not relevant, ✓: available, ⚬: partially available, ✗: not provided
documentation: ✓✓: excellent, MWE, ✓: few inconsistencies, ⚬: bad quality, ✗: not available

decision: ✓: considered; ⚬: considered but not built; ✗: out of scope of the study
Table 2: Considered tools[24]: availability and usage reliability

We collected the static analysis tools from[24], plus one additional paper encountered during our
review of the state-of-the-art (DidFail[20]). They are listed in Table 2, with the original release
date and associated paper. We intentionally limited the collected tools to the ones selected by
Li et al.[24] for several reasons. First, not using recent tools enables to have a gap of at least
5 years between the publication and the more recent APK files, which enables to measure the
reusability of previous contribution with a reasonable gap of time. Second, collecting new tools
would require to describe these tools in depth, similarly to what have been performed by Li et
al.[24], which is not the primary goal of this paper. Additionally, selection criteria such as the

482

483

484
485
486
487
488
489
490
491

12

https://github.com/tanzirul/a3e
https://github.com/tvidas/a5
https://github.com/hgascon/adagio
https://github.com/arguslab/Argus-SAF
https://github.com/maggieddie/pushdownoo
https://github.com/androguard/androguard
https://code.google.com/archive/p/android-app-analysis-tool/source/default/source
https://github.com/askk/apparecium
https://github.com/ub-rms/blueseal
https://github.com/kwanghoon/javaAnalysis
https://github.com/dialdroid-android/DIALDroid
https://bitbucket.org/wklieber/didfail/src/master/
https://github.com/MIT-PAC/droidsafe-src
https://github.com/secure-software-engineering/FlowDroid
http://web.cse.ohio-state.edu/presto/software/gator/
https://github.com/siis/ic3
https://github.com/lilicoding/soot-infoflow-android-iccta
https://github.com/MaxLillack/Lotrack
https://github.com/sfahl/mallodroid
http://castle.cse.ust.hk/perfchecker/tool_obtain.php
https://github.com/sebastianpoeplau/android-whitelists
https://github.com/plum-umd/redexer
https://github.com/SAAF-Developers/saaf
https://github.com/zyrikby/StaDynA
https://github.com/cuplv/thresher
https://bitbucket.org/erw/dalvik-bytecode-analysis-tool/src/master/

4.3. Methodology

publication venue or number of citations would be necessary to select a subset of tools, which
would require an additional methodology. These possible contributions are left for future work.

Some tools use hybrid analysis (both static and dynamic): A3E[4], A5[43], Android-app-
analysis[14], StaDynA[48]. They have been excluded from this paper. We manually searched the
tool repository when the website mentioned in the paper is no longer available (e.g., when the
repository have been migrated from Google code to GitHub) and for each tool we searched for:

• an optional binary version of the tool that would be usable as a fall back (if the sources
cannot be compiled for any reason);

• the source code of the tool;
• the documentation for building and using the tool with a MWE (Minimum Working

Example).

In Table 2 we rated the quality of these artifacts with “✓” when available but may have
inconsistencies, a “⚬” when too much inconsistencies (inaccurate remarks about the sources,
dead links or missing parts) have been found, a “✗” when no documentation have been found,
and a double “✓✓” for the documentation when it covers all our expectations (building process,
usage, MWE). Results show that documentation is often missing or very poor (e.g., Lotrack),
which makes the rebuild process very complex and the first analysis of a MWE.

We finally excluded Choi et al.[7] as their tool works on the sources of Android applications,
and Poeplau et al.[37] that focus on Android hardening. As a summary, in the end we have
20 tools to compare. Some specificities should be noted. The IC3 tool will be duplicated in
our experiments because two versions are available: the original version of the authors and a
fork used by other tools like IccTa. For Androguard, the default task consists of unpacking the
bytecode, the resources, and the Manifest. Cross-references are also built between methods and
classes. Because such a task is relatively simple to perform, we decided to duplicate this tool
and ask to Androguard to decompile an APK and create a control flow graph of the code using
its decompiler: DAD. We refer to this variant of usage as androguard_dad. For Thresher and
Lotrack, because these tools cannot be built, we excluded them from experiments.

Finally, starting with 26 tools of Table 2, with the two variations of IC3 and Androguard, we
have in total 22 static analysis tools to evaluate in which two tools cannot be built and will be
considered as always failing.

492
493

494
495
496
497

498
499
500
501
502

503
504
505
506
507
508

509
510
511
512
513
514
515
516
517
518

519
520
521

13

Chapter 4 – RASTA

4.3.2 Source Code Selection and Building Process

Origin Alive Forks EnvironmentTool Last Commit
Date

Authors
ReachedStars Alive Nb Usable Language – OS

Adagio [13] 74 ✓ 0 ✗ 2022-11-17 ✓ Python – U20.04
Amandroid [44] 161 ✗ 2 ✗ 2021-11-10 ✓ Scala – U22.04
Anadroid [27] 10 ✗ 0 ✗ 2014-06-18 ✗ Scala/Java/Python – U22.04

Androguard [8] 4430 ✓ 3 ✗ 2023-02-01 ✗ Python – Python 3.11 slim
Apparecium [41] 0 ✗ 1 ✗ 2014-11-07 ✗ Python – U22.04

BlueSeal [40] 0 ✗ 0 ✗ 2018-07-04 ✓ Java – U14.04
DIALDroid [6] 16 ✗ 1 ✗ 2018-04-17 ✗ Java – U18.04
DidFail [20] 4 ✗ 2015-06-17 ✓ Java/Python – U12.04

DroidSafe [16] 92 ✗ 3 ✗ 2017-04-17 ✓ Java/Python – U14.04
Flowdroid [3] 868 ✓ 1 ✗ 2023-05-07 ✓ Java – U22.04
Gator [39, 47] 2019-09-09 ✓ Java/Python – U22.04

IC3 [33] 32 ✗ 3 ✓ 2022-12-06 ✗ Java – U12.04 / 22.04
IccTA [22] 83 ✗ 0 ✗ 2016-02-21 ✓ Java – U22.04

Lotrack [28] 5 ✗ 2 ✗ 2017-05-11 ✓ Java – ?
MalloDroid [12] 64 ✗ 10 ✗ 2013-12-30 ✗ Python – U16.04
PerfChecker [29] ✗ – ✓ Java – U14.04

Redexer [19] 153 ✗ 0 ✗ 2021-05-20 ✓ Ocaml/Ruby – U22.04
SAAF [18] 35 ✗ 5 ✗ 2015-09-01 ✓ Java – U14.04

Thresher [5] 31 ✗ 1 ✗ 2014-10-25 ✓ Java – U14.04
Wognsen et al. [45] ✗ 2022-06-27 ✗ Python/Prolog – U22.04

✓: yes, ✗: no, UX.04: Ubuntu X.04
Table 3: Selected tools, forks, selected commits and running environment

In a second step, we explored the best sources to be selected among the possible forks of a
tool. We reported some indicators about the explored forks and our decision about the selected
one in Table 3. For each source code repository called “Origin”, we reported in Table 3 the
number of GitHub stars attributed by users and we mentioned if the project is still alive (✓
in column Alive when a commit exist in the last two years). Then, we analyzed the fork tree
of the project. We searched recursively if any forked repository contains a more recent commit
than the last one of the branch mentioned in the documentation of the original repository. If
such a commit is found (number of such commits are reported in column Alive Forks Nb), we
manually looked at the reasons behind this commit and considered if we should prefer this more
up-to-date repository instead of the original one (column “Alive Forks Usable”). As reported
in Table 3, we excluded all forks, except IC3 for which we selected the fork JordanSamhi/ic3,
because they always contain experimental code with no guarantee of stability. For example, a
fork of Aparecium contains a port for Windows 7 which does not suggest an improvement of
the stability of the tool. For IC3, the fork seems promising: it has been updated to be usable
on a recent operating system (Ubuntu 22.04 instead of Ubuntu 12.04 for the original version)

522

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

14

4.3. Methodology

and is used as a dependency by IccTa. We decided to keep these two versions of the tool (IC3
and IC3_fork) to compare their results.

Then, we self-allocated a maximum of four days for each tool to successfully read and follow
the documentation, compile the tool and obtain the expected result when executing an analysis
of a MWE. We sent an email to the authors of each tool to confirm that we used the more
suitable version of the code, that the command line we used to analyze an application is the
most suitable one and, in some cases, requested some help to solve issues in the building process.
We reported in Table 3 the authors that answered our request and confirmed our decisions.

From this building phase, several observations can be made. Using a recent operating system,
it is almost impossible in a reasonable amount of time to rebuild a tool released years ago. Too
many dependencies, even for Java based programs, trigger compilation or execution problems.
Thus, if the documentation mentions a specific operating system, we use a Docker image of
this OS. Most of the time, tools require additional external components to be fully functional.
It could be resources such as the android.jar file for each version of the SDK, a database,
additional libraries or tools. Depending of the quality of the documentation, setting up those
components can take hours to days. This is why we automatized in a Dockerfile the setup of
the environment in which the tool is built and run³

4.3.3 Runtime Conditions

Figure 2: Methodology overview

As shown in Figure 2, before benchmarking the tools, we built and installed them in a Docker
containers for facilitating any reuse of other researchers. We converted them into Singularity
containers because we had access to such a cluster and because this technology is often used
by the HPC community for ensuring the reproducibility of experiments. We performed manual
tests using these Singularity images to check:

3. To guarantee reproducibility we published the results, datasets, Dockerfiles and containers: https://
github.com/histausse/rasta, https://zenodo.org/records/10144014, https://zenodo.org/records/10980349 and
on Docker Hub as histausse/rasta-<toolname>:icsr2024

538
539

540
541
542
543
544
545

546
547
548
549
550
551
552
553
554

555

556
557
558
559
560

561
562
563

15

https://github.com/histausse/rasta
https://github.com/histausse/rasta
https://zenodo.org/records/10144014
https://zenodo.org/records/10980349

Chapter 4 – RASTA

• the location where the tool is writing on the disk. For the best performances, we expect the
tools to write on a mount point backed by an SSD. Some tools may write data at unexpected
locations which required small patches from us.

• the amount of memory allocated to the tool. We checked that the tool could run a MWE
with a 64 GB limit of RAM.

• the network connection opened by the tool, if any. We expect the tool not to perform any
network operation such as the download of Android SDKs. Thus, we prepared the required
files and cached them in the images during the building phase. In a few cases, we patched
the tool to disable the download of resources.

A campaign of tests consists in executing the 20 selected tools on all APKs of a dataset. The
constraints applied on the clusters are:

• No network connection is authorized in order to limit any execution of malicious software.
• The allocated RAM for a task is 64 GB.
• The allocated maximum time is 1 hour.
• The allocated object space / stack space is 64 GB / 16 GB if the tool is a Java based

program.

For the disk files, we use a mount point that is stored on a SSD disk, with no particular limit of
size. Note that, because the allocation of 64 GB could be insufficient for some tool, we evaluated
the results of the tools on 20% of our dataset (described later in Section 4.3.4) with 128 GB of
RAM and 64 GB of RAM and checked that the results were similar. With this confirmation,
we continued our evaluations with 64 GB of RAM only.

4.3.4 Dataset
We built a dataset named Rasta to cover all dates between 2010 to 2023. This dataset is a
random extract of Androzoo[1], for which we balanced applications between years and size.
For each year and inter-decile range of size in Androzoo, 500 applications have been extracted
with an arbitrary proportion of 7% of malware. This ratio has been chosen because it is the
ratio of goodware/malware that we observed when performing a raw extract of Androzoo.
For checking the maliciousness of an Android application we rely on the VirusTotal detection
indicators. If more than 5 antiviruses have flagged the application as malicious, we consider
it as a malware. If no antivirus has reported the application as malicious, we consider it as a
goodware. Applications in between are dropped.

For computing the release date of an application, we contacted the authors of Androzoo to
compute the minimum date between the submission to Androzoo and the first upload to Virus-
Total. Such a computation is more reliable than using the DEX date that is often obfuscated
when packaging the application.

564
565
566
567
568
569
570
571
572

573
574

575
576
577
578
579

580
581
582
583
584

585
586
587
588
589
590
591
592
593
594

595
596
597
598

16

4.4 Experiments

4.4.1 RQ1: Re-Usability Evaluation
TODO 14 ▶ alt text for figure rasta-exit / rasta-exit-drebin ◀

Figure 3: Exit status for the Drebin dataset

Figure 4: Exit status for the Rasta dataset

Figure 3 and Figure 4 compare the Drebin and Rasta datasets. They represent the success/
failure rate (green/orange) of the tools. We distinguished failure to compute a result from
timeout (blue) and crashes of our evaluation framework (in grey, probably due to out of memory
kills of the container itself). Because it may be caused by a bug in our own analysis stack, exit
status represented in grey (Other) are considered as unknown errors and not as failure of the
tool. TODO 15 ▶ We discuss further errors for which we have information in the logs
in sec:rasta-failure-analysis. ◀

599

600
601

602
603
604
605
606
607
608

17

Chapter 4 – RASTA

Results on the Drebin datasets shows that 11 tools have a high success rate (greater than 85%).
The other tools have poor results. The worst, excluding Lotrack and Tresher, is Anadroid with
a ratio under 20% of success.

On the Rasta dataset, we observe a global increase of the number of failed status: 12 tools
(54.55%) have a finishing rate below 50%. The tools that have bad results with Drebin are of
course bad result on Rasta. Three tools (androguard_dad, blueseal, saaf) that were performing
well (higher than 85%) on Drebin surprisingly fall below the bar of 50% of failure. 7 tools keep a
high success rate: Adagio, Amandroid, Androguard, Apparecium, Gator, Mallodroid, Redexer.
Regarding IC3, the fork with a simpler build process and support for modern OS has a lower
success rate than the original tool.

Two tools should be discussed in particular. Androguard has a high success rate which is not
surprising: it used by a lot of tools, including for analyzing application uploaded to the Androzoo
repository. Nevertheless, when using Androguard decompiler (DAD) to decompile an APK, it
fails more than 50% of the time. This example shows that even a tool that is frequently used
can still run into critical failures. Concerning Flowdroid, our results show a very low timeout
rate (0.06%) which was unexpected: in our exchanges, Flowdroid’s author were expecting a
higher rate of timeout and fewer crashes.

As a summary, the final ratio of successful analysis for the tools that we could run is 54.9%.
When including the two defective tools, this ratio drops to 49.9%.

RQ1 answer: On a recent dataset we consider that 54.55% of the tools are unusable. For
the tools that we could run, 54.9% of analysis are finishing successfully.

4.4.2 RQ2: Size, SDK and Date Influence
To measure the influence of the date, SDK version and size of applications, we fixed one
parameter while varying an other. For the sake of clarity, we separated Java based / non Java
based tools.

TODO 16 ▶ Alt text for fig rasta-decorelation-size ◀

609
610
611

612
613
614
615
616
617
618

619
620
621
622
623
624
625

626
627

628
629

630
631
632
633

634

18

4.4. Experiments

Subfigure 6: Java based tools Subfigure 7: Non Java based tools
Figure 5: Finishing rate by bytecode size for APK detected in 2022

Fixed application year. (5000 APKs) We selected the year 2022 which has a good amount of
representatives for each decile of size in our application dataset. Subfigure 6} (resp. Subfigure 7)
shows the finishing rate of the tools in function of the size of the bytecode for Java based tools
(resp. non Java based tools) analyzing applications of 2022. We can observe that all Java based
tools have a finishing rate decreasing over years. 50% of non Java based tools have the same
behavior.

TODO 17 ▶ Alt text for fig rasta-decorelation-size ◀

Subfigure 9: Java based tools Subfigure 10: Non Java based tools
Figure 8: Finishing rate by discovery year with a bytecode size ∈ [4.08, 5.2] MB

Fixed application bytecode size. (6252 APKs) We selected the sixth decile (between 4.08 and
5.20 MB), which is well represented in a wide number of years. Subfigure 9 (resp. Subfigure 10)
represents the finishing rate depending of the year at a fixed bytecode size. We observe that 9
tools over 12 have a finishing rate dropping below 20% for Java based tools, which is not the
case for non Java based tools.

TODO 18 ▶ Alt text for fig rasta-decorelation-min-sdk ◀

635
636
637
638
639
640

641

642
643
644
645
646

647

19

Chapter 4 – RASTA

Subfigure 12: Java based tools Subfigure 13: Non Java based tools
Figure 11: Finishing rate by min SDK with a bytecode size ∈ [4.08, 5.2] MB

We performed similar experiments by variating the min SDK and target SDK versions, still
with a fixed bytecode size between 4.08 and 5.2 MB, as shown in Subfigure 12 and Subfigure 13.
We found that contrary to the target SDK, the min SDK version has an impact on the finishing
rate of Java based tools: 8 tools over 12 are below 50% after SDK 16. It is not surprising, as
the min SDK is highly correlated to the year.

RQ2 answer: The success rate varies based on the size of bytecode and SDK version. The
date is also correlated with the success rate for Java based tools only.

4.4.3 RQ3: Malware vs Goodware

Average DEX size (MB) Finishing Rate: FR Ratio Size Ratio FRDecile Good Mal Good Mal Good/Mal Good/Mal

1 0.13 0.11 0.85 0.82 1.17 1.04
2 0.54 0.55 0.74 0.72 0.97 1.03
3 1.37 1.25 0.63 0.66 1.09 0.97
4 2.41 2.34 0.57 0.62 1.03 0.92
5 3.56 3.55 0.53 0.59 1 0.9
6 4.61 4.56 0.5 0.61 1.01 0.82
7 5.87 5.91 0.47 0.57 0.99 0.83
8 7.64 7.63 0.43 0.56 1 0.76
9 11.39 11.26 0.39 0.58 1.01 0.67
10 24.24 21.36 0.33 0.46 1.13 0.73

Table 4: DEX size and Finishing Rate (FR) per decile

We compared the finishing rate of malware and goodware applications for evaluated tools.
Because, the size of applications impacts this finishing rate, it is interesting to compare the
success rate for each decile of bytecode size. Table 4 reports the bytecode size and the finishing
rate of goodware and malware in each decile of size. We also computed the ratio of the bytecode
size and finishing rate for the two populations. We observe that the ratio for the finishing rate

648
649
650
651
652

653
654

655

656
657
658
659
660

20

4.5. Discussion

decreases from 1.04 to 0.73, while the ratio of the bytecode size is around 1. We conclude from
this table that analyzing malware triggers less errors than for goodware.

RQ3 answer: Analyzing malware applications triggers less errors for static analysis tools
than analyzing goodware for comparable bytecode size.

4.5 Discussion

4.5.1 State-of-the-art comparison
Our finding are consistent with the numerical results of Pauck et al. that showed that 58.89%
of DIALDroid-Bench[6] real-world applications are analyzed successfully with the 6 evaluated
tools[35]. Six years after the release of DIALDroid-Bench, we obtain a lower ratio of 40.05% for
the same set of 6 tools but using the Rasta dataset of 62 525 applications. We extended this
result to a set of 20 tools and obtained a global success rate of 54.9%. We confirmed that most
tools require a significant amount of work to get them running[38].

Investigating the reason behind tools’ errors is a difficult task and will be investigated in a
future work. For now, our manual investigations show that the nature of errors varies from one
analysis to another, without any easy solution for the end user for fixing it.

4.5.2 Recommendations
Finally, we summarize some takeaways that developers should follow to improve the success of
reusing their developed software.

For improving the reliability of their software, developers should use classical development best
practices, for example continuous integration, testing, code review. For improving the reusability
developers should write a documentation about the tool usage and provide a minimal working
example and describe the expected results. Interactions with the running environment should
be minimized, for example by using a docker container, a virtual environment or even a virtual
machine. Additionally, a small dataset should be provided for a more extensive test campaign
and the publishing of the expected result on this dataset would ensure to be able to evaluate
the reproducibility of experiments.

Finally, an important remark concerns the libraries used by a tool. We have seen two types of
libraries:
• internal libraries manipulating internal data of the tool;
• external libraries that are used to manipulate the input data (APKs, bytecode, resources).

We observed by our manual investigations that external libraries are the ones leading to crashes
because of variations in recent APKs (file format, unknown bytecode instructions, multi-DEX

661
662

663
664

665

666
667
668
669
670
671
672

673
674
675

676
677
678

679
680
681
682
683
684
685
686

687
688
689
690

691
692

21

Chapter 4 – RASTA

files). We believe that the developer should provide enough documentation to make possible a
later upgrade of these external libraries.

4.5.3 Threats to validity
Our application dataset is biased in favor of Androguard, because Androzoo have already used
Androguard internally when collecting applications and discarded any application that cannot
be processed with this tool.

Despite our best efforts, it is possible that we made mistakes when building or using the tools. It
is also possible that we wrongly classified a result as a failure. To mitigate this possible problem
we contacted the authors of the tools to confirm that we used the right parameters and chose
a valid failure criterion.

The timeout value, amount of memory are arbitrarily fixed. For mitigating their effect, a small
extract of our dataset has been analyzed with more memory/time for measuring any difference.

Finally, the use of VirusTotal for determining if an application is a malware or not may be
wrong. For limiting this impact, we used a threshold of at most 5 antiviruses (resp. no more
than 0) reporting an application as being a malware (resp. goodware) for taking a decision
about maliciousness (resp. benignness).

4.6 Conclusion
This paper has assessed the suggested results of the literature[30, 35, 38] about the reliability
of static analysis tools for Android applications. With a dataset of 62 525 applications we
established that 54.55% of 22 tools are not reusable, when considering that a tool that has more
than 50% of time a failure is unusable. In total, the analysis success rate of the tools that we
could run for the entire dataset is 54.9%. The characteristics that have the most influence on
the success rate is the bytecode size and min SDK version. Finally, we showed that malware
APKs have a better finishing rate than goodware.

In future works, we plan to investigate deeper the reported errors of the tools in order to analyze
the most common types of errors, in particular for Java based tools. We also plan to extend
this work with a selection of more recent tools performing static analysis.

Following Reaves et al. recommendations[38], we publish the Docker and Singularity images we
built to run our experiments alongside the Docker files. This will allow the research community
to use directly the tools without the build and installation penalty.

693
694

695
696
697
698

699
700
701
702

703
704

705
706
707
708

709
710
711
712
713
714
715
716

717
718
719

720
721
722

22

4.6. Conclusion

23

Chapter 5

Class loaders in the middle: con-
fusing Android static analyzers

5.1 Introduction
Android applications are distributed using markets of applications. The market maintainers
have the difficult task to discover suspicious applications and delete them if they are effectively
malicious applications. For such a task, some automated analysis is performed, but sometimes,
a manual investigation is required. A reverser is in charge of studying the application: they
usually perform a static analysis and a dynamic analysis. The reverser uses in the first phase
static analysis tools in order to access and review the code of the application. If this first phase
is not accurately driven, for example if they fail to access a critical class, they may decide
that a malicious application is safe. Additionally, as stated by Li et al.[24] in their conclusions,
such a task is complexified by dynamic code loading, reflective calls, native code, and multi-
threading which cannot be easily handled statically. Nevertheless, even if we do not consider
these aspects, determining statically how the regular class loading system of Android is working
is a difficult task.

Class loading occurs at runtime and is handled by the components of Android Runtime (ART),
even when the application is partially or fully compiled ahead of time. Nevertheless, at the
development stage, Android Studio handles the resolution of the different classes that can be
internal to the application. When building, the code is linked to the standard library i.e. the
code contained in android.jar. In this article, we call these classes “Development SDK classes”.
android.jar is not added to the application because its classes will be available at runtime in
others .jar files. To distinguish those classes found at runtime from Dev SDK classes, we call
them Android SDK classes. When releasing the application, the building process of Android
Studio can manage different versions of the Android SDK, reported in the Manifest as the
“SDK versions”. Indeed, some parts of the core Android SDK classes can be embedded in the
application, for retro compatibility purposes: by comparing the specified minimum SDK version
and the target SDK version, the code of extra Android SDK classes is stored in the APK file.
As a consequence, it is frequent to find inside applications some classes that come from the
com.android packages. At runtime each smartphone runs a unique version of Android, but,
as the application is deployed on multiple versions of Android, it is difficult to predict which

723

724

725

726
727
728
729
730
731
732
733
734
735
736
737
738

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

24

5.1. Introduction

classes will be loaded from the Android SDK classes or from the APK file itself. This complexity
increases with the multi-DEX format of recent APK files that can contain several bytecode files.

Going back to the problem of a reverser studying a suspicious application statically, the reverser
uses tools to disassemble the application[31] and track the flows of data in the bytecode. As
an example, for a spyware potentially leaking personal information, the reverser can unpack
the application with Apktool and, after manually locating a method that they suspect to read
sensitive data (by reading the unpacked bytecode), they can compute with FlowDroid[3] if there
is a flow from this method to methods performing HTTP requests. During these steps, the
reverser faces the problem of resolving statically, which class is loaded from the APK file and
the Android SDK classes. If they, or the tools they use, choose the wrong version of the class,
they may obtain wrong conclusions about the code. Thus, the possibility of shadowing classes
could be exploited by an attacker in order to obfuscate the code.

In this paper, we study how Android handles the loading of classes in the case of multiple
versions of the same class. Such collision can exist inside the APK file or between the APK
file and Android SDK classes. We intend to understand if a reverser would be impacted during
a static analysis when dealing with such an obfuscated code. Because this problem is already
enough complex with the current operations performed by Android, we exclude the case where
a developer recodes a specific class loader or replace a class loader by another one, as it is often
the case for example in packed applications[9]. We present a new technique that “shadows”
a class i.e., embeds a class in the APK file and “presents” it to the reverser instead of the
legitimate version. The goal of such an attack is to confuse them during the reversing process:
at runtime the real class will be loaded from another location of the APK file or from the
Android SDK, instead of the shadow version. This attack can be applied to regular classes
of the Android SDK or to hidden classes of Android[17, 25]. We show how these attacks can
confuse the tools of the reverser when he performs a static analysis. In order to evaluate if
such attacks are already used in the wild, we analyzed 49 975 applications from 2023 that we
extracted randomly from AndroZoo[1]. Our main result is that 23.52% of these applications
contain shadow collisions against the SDK and 3.11% against hidden classes. Our investigations
conclude that most of these collisions are not voluntary attacks, but we highlight one specific
malware sample performing strong obfuscation revealed by our detection of one shadow attack.

The paper is structured as follows. Section 5.2 reviews the state of the art about loading of
Android classes and the tools to perform reverse engineering on applications. Then, Section 5.3
investigates the internal mechanisms about class loading and presents how a reverser can be
confused by these mechanisms. In Section 5.4, we design obfuscation techniques and we show
their effect on static analysis tools. Finally, Section 5.5 evaluates if these obfuscation techniques
are used in the wild, by searching inside 49 975 APKs if they exploit these techniques. Section 5.6
discusses the limits of this work and Section 5.7 concludes the paper.

754
755

756
757
758
759
760
761
762
763
764
765

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

784
785
786
787
788
789
790

25

Chapter 5 – Class loaders in the middle: confusing Android static analyzers

5.2 State of the art
Class loading Class loading mechanisms have been studied in the general context of the Java
language. Gong[15] describes the JDK 1.2 class loading architecture and capabilities. One of
the main advantages of class loading is the type safety property that prevents type spoofing.
As explained by Liang and Bracha[26], by capturing events at runtime (new loaders, new class)
and maintaining constraints on the multiple loaders and their delegation hierarchy, authors can
avoid confusion when loading a spoofed class. This behavior is now implemented in modern Java
virtual machines. Later Tazawa and Hagiya[42] proposed a formalization of the Java Virtual
Machine supporting dynamic class loading in order to ensure type safety. Those works ensure
strong safety for the Java Virtual Machine, in particular when linking new classes at runtime.
Although Android has a similar mechanism, the implementation is not shared with the JVM
of Oracle. Additionally, in this paper, we do not focus on spoofing classes at runtime, but on
confusion that occurs when using a static analyzer used by a reverser that tries to understand
the code loading process offline.

Contributions about Android class loading focus on using the capabilities of class loading to
extend Android features or to prevent reverse engineering of Android applications. For instance,
Zhou et al.[49] extend the class loading mechanism of Android to support regular Java bytecode
and Kritz and Maly[21] propose a new class loader to automatically load modules of an
application without user interactions.

Regarding reverse engineering, class loading mechanisms are frequently used by packers for
hiding all or parts of the code of an application[9]. The problem to be solved consists in locating
secondary .dex files that can be unciphered just before being loaded. Dynamic hook mechanisms
should be used to intercept the bytecode at load time. These techniques can be of some help for
the reverser, but they require to instrument the source code of AOSP or the application itself.
The engineering cost is high and anti-debugging techniques can slow down the process. Thus, a
reverser always starts by studying statically an application using static analysis tools[24], and
will eventually go to dynamic analysis[10] if further costly extra analysis is needed (for example,
if they spot the use of a custom class loader). In the first phase of an analysis where the used
methods are static, the reverser can have the feeling that what he sees in the bytecode is what
is loaded at runtime. Our goal is to show that tools mentioned in the literature[24] can suffer
from attacks exploiting confusion inside regular class loading mechanisms of Android.

Hidden APIs Li et al. did an empirical study of the usage and evolution of hidden APIs[25]. They
found that hidden APIs are added and removed in every release of Android, and that they are
used both by benign and malicious applications. More recently, He et al. [17] did a systematic
study of hidden service API related to security. They studied how the hidden API can be used
to bypass Android security restrictions and found that although Google countermeasures are
effective, they need to be implemented inside the system services and not the hidden API due

791
792
793
794
795
796
797
798
799
800
801
802
803
804

805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821

822
823
824
825
826
827

26

5.3. Analyzing the class loading process

to the lack of in-app privilege isolation: the framework code is in the same process as the user
code, meaning any restriction in the framework can be bypassed by the user.

Static analysis tools Static analysis tools are used to perform operations on an APK file, for
example extracting its bytecode or information from the Manifest file. Because of the complexity
of Android, few tools have followed all the evolutions of the file format and are robust enough
to analyze all applications without crashing[32]. The tools can share the backend used to
manipulate the code. For example, Apktool is often called in a subprocess to extracte the
bytecode. Another example is Soot[2], a Java framework that allows to manipulate the bytecode
from an object representation of instructions. This framework enables advanced features such
as inserting or removing bytecode instructions but can require a lot of memory and time to
perform its operations. The most known tool built on top of Soot is FlowDroid[3], which enables
to compute information flows statically into the code.

Because these tools are used by reversers, we will evaluate the accuracy of the provided results
in the case of an application developer exploits the possible confusions that brings the class
loading mechanisms of Android.

5.3 Analyzing the class loading process
For building obfuscation techniques based on the confusion of tools with class loaders, we
manually studied the code of Android that handles class loading. In this section, we report the
inner workings of ART and we focus on the specificities of class loading that can bring confusion.
Because the class loading implementation has evolved over time during the multiple iterations
of the Android operating system, we mainly describe the behavior of ART from Android version
14 (SDK 34).

5.3.1 Class loaders
When ART needs to access a class, it queries a ClassLoader to retrieve its implementation.
Each class has a reference to the ClassLoader that loaded it, and this class loader is the one that
will be used to load supplementary classes used by the original class. For example in Listing 2,
when calling A.f(), the ART will load B with the class loader that was used to load A.

class A {
 public static void f() {
 B b = new B();
 b.do_something();
}}
Listing 2: Class instantiation

This behavior has been inherited from Java and most of the core classes regarding class loaders
have been kept in Android. Nevertheless, the Android implementation has slight differences and
new class loaders have been added. For example, the java class loader URLClassLoader is still

828
829

830
831
832
833
834
835
836
837
838
839

840
841
842

843
844
845
846
847
848
849

850
851
852
853
854

855
856
857

27

Chapter 5 – Class loaders in the middle: confusing Android static analyzers

present in Android, but contrary to the official documentation, most of its methods have been
removed or replaced by a stub that just raises an exception. Moreover, rather than using the
Java class loaders SecureClassLoader or URLClassLoader, Android has several new class loaders
that inherit from ClassLoader and override the appropriate methods.

The left part of Figure 14 shows the different class loaders specific to Android in white and
the stubs of the original Java class loaders in grey. The main difference between the original
Java class loaders and the ones used by Android is that they do not support the Java bytecode
format. Instead, the Android-specific class loaders load their classes from (many) different file
formats specific to Android. Usually, when used by a programmer, the classes are loaded from
memory or from a file using the DEX format (.dex). When used directly by ART, the classes
are usually stored in an application file (.apk) or in an optimized format (OAR/ODEX).

TODO 19 ▶ Alt text for cl-class_loading_classes ◀

gray – Java-based, white – Android-based
Figure 14: The class loading hierarchy of Android

5.3.2 Delegation
The order in which classes are loaded at runtime requires special attention. All the specific
Android class loaders (DexClassLoader, InMemoryClassLoader, etc.) have the same behavior
(except DelegateLastClassLoader) but they handle specificities for the input format. Each class
loader has a delegate class loader, represented in the right part of Figure 14 by black plain arrows
for an instance of PathClassLoader and an instance of DelegateLastClassLoader (the other class

858
859
860
861

862
863
864
865
866
867
868

869

870
871
872
873
874
875

28

5.3. Analyzing the class loading process

loaders also have this delegate). This delegate is a concept specific to class loaders and has
nothing to do with class inheritance. By default, class loaders will delegate to the singleton class
BootClassLoader, except if a specific class loader is provided when instantiating the new class
loader. When a class loader needs to load a class, except for DelegateLastClassLoader, it will
first ask the delegate, i.e. BootClassLoader, and if the delegate does not find the class, the class
loader will try to load the class on its own. This behavior implements a priority and avoids re-
defining by error a core class of the system, for example redefining java.lang.String that would
be loaded by a child class loader instead of its delegates. DelegateLastClassLoader behaves
slightly differently: it will first delegate to BootClassLoader then, it will check its files and finally,
it will delegate to its actual delegate (given when instantiating the DelegateLastClassLoader).
This behavior is useful for overriding specific classes of a class loader while keeping the other
classes. A normal class loader would prioritize the classes of its delegate over its own.

def get_mutli_dex_classses_dex_name(index: int):
 if index == 0:
 return "classes.dex"
 else:
 return f"classes{index+1}.dex"

def load_class(class_name: str):
 if is_platform_class(class_name):
 return load_from_boot_class_loader(class_name)
 else:
 index = 0
 dex_file = get_mutli_dex_classses_dex_name(index)
 while file_exists_in_apk(dex_file) and \
 not class_found_in_dex_file(class_name, dex_file):
 index += 1
 if file_exists_in_apk(dex_file):
 return load_from_file(dex_file, class_name)
 else:
 raise ClassNotFoundError()
Listing 3: Default Class Loading Algorithm for Android Applications

At runtime, Android instantiates for each application three instances of class loaders described
previously: bootClassLoader, the unique instance of BootClassLoader, and two instances of
PathClassLoader: systemClassLoader and appClassLoader. bootClassLoader is responsible for
loading Android platform classes. It is the direct delegate of the two other class loaders
instantiated by Android. appClassLoader points to the application .apk file, and is used to
load the classes inside the application systemClassLoader is a PathClassLoader pointing to
'.', the working directory of the application, which is '/' by default. The documentation
of ClassLoader.getSystemClassLoader reports that this class loader is the default context

876
877
878
879
880
881
882
883
884
885
886
887

888
889
890
891
892
893
894
895

29

Chapter 5 – Class loaders in the middle: confusing Android static analyzers

class loader for the main application thread. In reality, the platform classes are loaded
by bootClassLoader and the classes from the application are loaded from appClassLoader.
systemClassLoader is never used.

In addition to the class loaders instantiated by ART when starting an application, the developer
of an application can use class loaders explicitly by calling to ones from the Android SDK, or by
recoding custom class loaders that inherit from the ClassLoader class. At this point, modeling
accurately the complete class loading algorithm becomes impossible: the developer can program
any algorithm of their choice. For this reason, this case is excluded from this paper and we
focus on the default behavior where the context class loader is the one pointing to the .apk file
and where its delegate is BootClassLoader. With such a hypothesis, the delegation process can
be modeled by the pseudo-code of method load_class given in .

In addition, it is important to distinguish the two types of platform classes handled by
BootClassLoader and that both have priority over classes from the application at runtime:

• the ones available in the Android SDK (normally visible in the documentation);
• the ones that are internal and that should not be used by the developer. We call them

hidden classes[17, 25] (not documented).

As a preliminary conclusion, we observe that a priority exists in the class loading mechanism
and that an attacker could use it to prioritize an implementation over another one. This could
mislead the reverser if they use the one that has the lowest priority. To determine if a class is
impacted by the priority given to BootClassLoader, we need to obtain the list of classes that are
part of Android i.e., the platform classes. We discuss in the next section how to obtain these
classes from the emulator.

896
897
898

899
900
901
902
903
904
905
906

907
908

909
910
911

912
913
914
915
916
917

30

5.3. Analyzing the class loading process

5.3.3 Determining platform classes

Figure 15: Location of SDK classes during development and at runtime

Figure 15 shows how classes of Android are used in the development environment and at
runtime. In the development environment, Android Studio uses android.jar and the specific
classes written by the developer. After compilation, only the classes of the developer, and
eventually extra classes computed by Android Studio are zipped in the APK file, using the
multi-dex format. At runtime, the application uses BootClassLoader to load the platform
classes from Android. Until our work, previous works[17, 25] considered both Android SDK
and hidden classes to be in the file /system/framework/framework.jar found in the phone itself,
but we found that the classes loaded by bootClassLoader are not all present in framework.jar.
For example, He et al. [17] counted 495 thousand APIs (fields and methods) in Android 12,
based on Google documentation on restriction for non SDK interfaces4. However, when looking
at the content of framework.jar, we only found 333 thousand APIs. Indeed, classes such as
com.android.okhttp.OkHttpClient are loaded by bootClassLoader, listed by Google, but not
in framework.jar.

For optimization purposes, classes are now loaded from boot.art. This file is used to speed up the
start-up time of applications: it stores a dump of the C++ objects representing the platform
classes (Android SDK and hidden classes) so that they do not need to be generated each time
an application starts. Unfortunately, this format is not documented and not retro-compatible

4. https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces

918

919
920
921
922
923
924
925
926
927
928
929
930
931

932
933
934
935

936

31

https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces

Chapter 5 – Class loaders in the middle: confusing Android static analyzers

between Android versions and is thus difficult to parse. An easier solution to investigate the
platform classes is to look at the BOOTCLASSPATH environment variable in an emulator. This
variable is used to load the classes without the boot.art optimization. We found 25 .jar files,
including framework.jar, in the BOOTCLASSPATH of the standard emulator for Android 12 (SDK
32), 31 for Android 13 (SDK 33), and 35 for Android 14 (SDK 35), containing respectively a total
of 499 837, 539 236 and 605 098 API methods and fields. Table 5) summarizes the discrepancies
we found between Google’s list and the platform classes we found in Android emulators. Note
also that some methods may also be found only in the documentation. Our manual investigations
suggest that the documentation is not well synchronized with the evolution of the platform
classes and that Google has almost solved this issue in API 34.

Number of API methods
SDK version

Documented In emulator Only documented Only in emulator

32 495 713 499 837 1060 5184

33 537 427 539 236 1258 3067

34 605 106 605 098 26 18

Table 5: Comparison for API methods between documentation and emulators

We conclude that it can be dangerous to trust the documentation and that gathering infor-
mation from the emulator or phone is the only reliable source. Gathering the precise list of
classes and the associated bytecode is not a trivial task.

5.3.4 Multiple DEX files
For the application class files, Android uses its specific format called DEX: all the classes
of an application are loaded from the file classes.dex. With the increasing complexity of
Android applications, the need arrised to load more methods than the DEX format could
support in one .dex file. To solve this problem, Android started storing classes in multiple
files named classesX.dex as illustrated by the Listing 4 that generates the filenames read by
class loaders. Android starts loading the file GetMultiDexClassesDexName(0) (classes.dex), then
GetMultiDexClassesDexName(1) (classes2.dex), and continues until finding a value n for which
GetMultiDexClassesDexName(n) does not exist. Even if Android emits a warning message when
it finds more than 100 .dex files, it will still load any number of .dex files that way. This change
had the unintended consequence of permitting two classes with the same name but different
implementations to be stored in the same .apk file using two .dex files.

Android explicitly performs checks that prevent several classes from using the same name inside
a .dex file. However, this check does not apply to multiple .dex files in the same .apk file, and

937
938
939
940
941
942
943
944
945
946

947
948
949

950
951
952
953
954
955
956
957
958
959
960
961

962
963

32

5.4. Obfuscation Techniques

a .dex can contain a class with a name already used by another class in another .dex file of the
application. Of course, such a situation should not happen when multiple .dex files have been
generated by properly Android Studio. Nevertheless, for an attacker controlling the process,
this issue raises the question of which class is selected when several classes sharing the same
name are present in .apk files.

We found that Android loads the class whose implementation is found first when looking in
the order of multiple dexfiles, as generated by the method GetMultiDexClassesDexName. We
will show later in Section 5.4.2 that this choice is not the most intuitive and can lead to fool
analysis tools when reversing an application. As a conclusion, we model both the multi-dex and
delegation behaviors in the pseudo-code of Listing 3.

++
std::string DexFileLoader::GetMultiDexClassesDexName(size_t index) {
 return (index == 0) ?
 "classes.dex" :
 StringPrintf("classes%zu.dex", index + 1);
}

Listing 4: The method generating the .dex filenames from the AOSP

5.4 Obfuscation Techniques
In this section, we present new obfuscation techniques that take advantage of the complexity of
the class loading process. Then, in order to evaluate their efficiency, we reviewed some common
Android reverse analysis tools to see how they behave when collisions occur between classes
of the APK or between a class of the APK and classes of Android (Android SDK or hidden
classes). We call this collision “class shadowing”, because the attacker version of the class
shadows the one that will be used at runtime. To evaluate if such shadow attacks are working,
we handcrafted three applications implementing shadowing techniques to test their impact on
static analysis tools. Then, we manually inspected the output of the tools in order to check
its consistency with what Android is really doing at runtime. For example, for Apktool, we
look at the output disassembled code, and for Flowdroid[3], we check that a flow between
Taint.source() and Taint.sink() is correctly computed.

5.4.1 Obfuscation Techniques
From the results presented in Section 5.3, three approaches can be designed to hide the behavior
of an application.

Self shadow: shadowing a class with another from APK This method consists in hiding the
implementation of a class with another one by exploiting the possible collision of class names,
as described in Section 5.3.4 with multiple .dex files. If reversers or tools ignore the priority
order of a multi-dex file, they can take into account the wrong version of a class.

964
965
966
967
968

969
970
971
972
973

974
975
976
977
978
979
980
981
982
983
984
985

986
987
988

989
990
991
992

33

Chapter 5 – Class loaders in the middle: confusing Android static analyzers

SDK shadow: shadowing a SDK class This method consists in presenting to the reverser a
fake implementation of a class of the SDK. This class is embedded in the APK file and has the
same name as the one of the SDK. Because BootClassLoader will give priority to the Android
SDK at runtime, the reverser or tool should ignore any version of a class that is contained in the
APK. The only constraint when shadowing an SDK class is that the shadowing implementation
must respect the signature of real classes. Note that, by introducing a custom class loader, the
attacker could inverse the priority, but this case is out of the scope of this paper.

Hidden shadow: shadowing an hidden class This method is similar to the previous one, except
the class that is shadowed is a hidden class. Because ART will give priority to the internal
version of the class, the version provided in the APK file will be ignored. Such shadow attacks
are more difficult to detect by a reverser, that may not know the existence of this specific hidden
class in Android.

5.4.2 Impact on static analysis tools
public class Main {
 public static void main(Activity ac) {
 String personal_data = Taint.source();
 String obfuscated_personal_data = Obfuscation.hide_flow(personal_data);
 Taint.sink(ac, obfuscated_personal_data);
 }
}
public class Obfuscation { // customized for each obfuscation technique
 public static String hide_flow(String personal_data) { ... }

Listing 5: Main body of test apps

We selected tools that are commonly used to unpack and reverse Android applications: Jadx5,
a decompiler for Android applications, Apktool6, a disassembler/repackager of applications,
Androguard7, one of the oldest Python package for manipulating Android applications, and
Flowdroid[3] that performs taint flow analysis.

For evaluating the tools, we designed a single application that we can customize for different
tests. Listing 5 shows the main body implementing:
• a possible flow to evaluate FlowDroid: a flow from a method Taint.source() to a method

Taint.sink(Activity, String) through a method Obfuscation.hide_flow(String);
• a possible use of a SDK or hidden class inside the class Obfuscation to evaluate platform

classes shadowing for other tools.

5. https://github.com/skylot/jadx
6. https://apktool.org/
7. https://github.com/androguard/androguard

993
994
995
996
997
998
999

1000
1001
1002
1003
1004

1005

1006
1007
1008
1009

1010
1011
1012
1013
1014
1015

1016
1017
1018

34

https://github.com/skylot/jadx
https://apktool.org/
https://github.com/androguard/androguard

5.4. Obfuscation Techniques

The first application we released is a control application that does not do anything special.
It will be used for checking the expecting result of tools. The second implements self
shadowing: the class Obfuscation is duplicated: one is the same as the in the control app
(Obfuscation.hide_flow(String) returns its arguments), and the other version returns a con-
stant string. These two versions are embedded in several DEX of a multi-dex application. The
third application tests SDK shadowing and needs an existing class of the SDK. We used Pair
that we try to shadow. We put data in a Pair and reread the data from the Pair. The colliding
Pair discards the data and returns null. The last application tests for Hidden API shadowing.
Like for the third one, we similarly store data in com.android.okhttp.Request and then retrieve
it. Again, the shadowing implementation discards the data.

We found that these static analysis tools do not consider the class loading mechanism, either
because the tools only look at the content of the application file (e.g., a disassembler) or because
they consider class loading to be a dynamic feature and thus out of their scope. In Table 6,
we report on the types of shadowing that can be tricked each tool. A plain circle is a shadow
attack that leads to a wrong result. A white circle indicates a tool emitting warnings or that
eventually displays the two versions of the class. A cross is a tool not impacted by a shadow
attack. We explain in more detail in the following the results for each considered tool.

Shadow Attack
Tool Version

Self SDK Hidden

Jadx 1.5.0 ⚬ ● ●
Apktool 2.9.3 ⚬ ● ●
Androguard 4.1.2 ⚬ ● ●
Flowdroid 2.13.0 ● × ●

●: working
⚬: works but producing warning or can be seen by the reverser

×: not working
Table 6: Working attacks against static analysis tools

5.4.2.1 Jadx
Jadx is a reverse engineering tool that regenerates the Java source code of an application. It
processes all the classes present in the application, but only save/display one class by name,
even if two versions are present in multiple .dex files. Nevertheless, when multiple classes with
the same name are found, Jadx reports it in a comment added to the generated Java source
code. This warning stipulates that a possible collision exists and lists the files that contain

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

1029
1030
1031
1032
1033
1034
1035

1036
1037
1038
1039
1040
1041

35

Chapter 5 – Class loaders in the middle: confusing Android static analyzers

the different versions of the class. Unfortunately, after reviewing the code of Jadx, we believe
that the selection of the displayed class is an undefined behavior. At least for the version 1.5.0
that we tested, we found that Jadx selects the wrong implementation when a class with the
same name is present. For example in classes2.dex and classes3.dex. We report it with a “⚬”
because warnings are issued.

Shadowing Android SDK and hidden classes is possible in Jadx: there is only one implemen-
tation of the class in the application and Jadx does not have a list of the internal classes of
Android: no warning is issued to the reverser that the displayed class is not the one used by
Android.

5.4.2.2 Apktool
Apktool generates Smali files, an assembler language for DEX bytecode. Apktool will store the
disassembled classes in a folder that matches the .dex file that stores the bytecode. This means
that when shadowing a class with two versions in two .dex files, the shadow implementations
will be disassembled into two directories. No indication is displayed that a collision is possible.
It is up to the reverser to have a chance to open the good one.

Similarly to Jadx, using an Android SDK or hidden class will not be detected by the tool that
will unpack the fake shadow version.

5.4.2.3 Androguard
Androguard has different usages, with different levels of analysis. The documentation highlights
the analysis commands that compute three types of objects: an APK object, a list of DEX
objects, and an Analysis object. The APK and the list of .dex files are a one-to-one represen-
tation of the content of an application, and have the same issues that we discussed with Apktool:
they provide the different versions of a shadow class contained in multiple .dex files.

The Analysis object is used to compute a method call graph and we found that this algorithm
may choose the wrong version of a shadowed class when using the cross references that are
computed. This leads to an invalid call graph as shown in Subfigure 18: the two methods
doSomething() are represented in the graph, but the one linked to main() on the graph is the one
calling the method good() when in fact the method bad() is called when running the application.

Androguard has a method .is_external() to detect if the implementation of a class is not
provided inside the application and a method .is_android_api() to detect if the class is part
of the Android API. Regrettably, the documentation of .is_android_api() explains that the
method is still experimental and just checks a few package names. This means that although
those methods are useful, the only indication of the use of an Android SDK or hidden classes
is the fact that the class is not in the APK file. Because of that, like for Apktool and Jadx,

1042
1043
1044
1045
1046

1047
1048
1049
1050

1051
1052
1053
1054
1055
1056

1057
1058

1059
1060
1061
1062
1063
1064

1065
1066
1067
1068
1069

1070
1071
1072
1073
1074
1075

36

5.4. Obfuscation Techniques

Androguard has no way to warn the reverser that the shadow of an Android SDK or hidden
classes is not the class used when running the application.

TODO 20 ▶ alt text androguard_call_graph ◀

Subfigure 17: Expected Call Graph Subfigure 18: Call Graph Computed by Androguard

Figure 16: Call Graphs of an application calling Main.bad() from a shadowed Obfuscation
class.

5.4.2.4 Flowdroid
Flowdroid[3] is used to detect if an application can leak sensitive information. To do so, the
analyst provides a list of source and sink methods. The return value of a method marked as
source is considered sensitive and the argument of a method marked as sink is considered to be
leaked. By analyzing the bytecode of an application, Flowdroid can detect if data emitted by
source methods can be exfiltrated by a sink method. Flowdroid is built on top of the Soot[2]
framework that handles, among other things, the class selection process.

We found that when selecting the classes implementation in a multi-dex APK, Soot uses an
algorithm close to what ART is performing: Soot sorts the .dex bytecode file with a specified
prioritizer (a comparison function that defines an order for .dex files) and selects the first
implementation found when iterating over the sorted files. Unfortunately, the prioritizer used
by Soot is not exactly the same as the one used by the ART. The Soot prioritizer will give
priority to classes.dex and then give priority to files whose name starts with classes over other
files and finally will use the alphabetical order. This order is good enough for application with
a small number of .dex files generated by Android Studio, but because it uses the alphabetical
order and does not check the exact format used by Android, a malicious developer could hide the
implementation of a class in classes2.dex by putting a false implementation in classes0.dex,
classes1.dex or classes12.dex.

1076
1077

1078

1079
1080
1081
1082
1083
1084
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

37

Chapter 5 – Class loaders in the middle: confusing Android static analyzers

In addition to self shadowing, Flowdroid is sensitive to the use of platform classes, as it needs
the bytecode of those classes to be able to track data flows. This is solved for SDK classes by
providing android.jar to Flowdroid. Flowdroid gives priority to the classes from the SDK over
the classes implemented in the application, thus defeating SDK shadow attacks. Unfortunately,
android.jar only contains classes from the Android SDK, meaning that using hidden classes
breaks the flow tracking. Solving this issue would require finding the bytecode of all the platform
classes of the Android version targeted and as we said previously it requires extracting this
information from the emulator.

We have seen that tools can be impacted by shadow attacks. In the next section, we will
investigate if these attacks are used in the wild.

5.5 Shadow attacks in the wild
In this section, we evaluate in the wild if applications that can be found in the Play store or
other markets use one of the shadow techniques. Our goal is to explore the usage of shadow
techniques in real applications. Because we want to include malicious applications (in case such
techniques would be used to hide malicious code), we selected 50 000 applications randomly
from AndroZoo[1] that appeared in 2023. Malicious applications are spot in our dataset by
using a threshold of 3 over the number of antivirus reporting an application as a malware. Some
few applications over the total cannot be retrieved or parsed leading to a final dataset of 49
975 applications. We automatically disassembled the applications to obtain the list of included
classes. Then, we check if any shadow attack occurs in the APK itself or with platform classes
of SDK 34.

5.5.1 Results
TODO 21 ▶ cl-shadow ◀

Number of apps Average Identical
Code% % malware Shadow

classes Median Target
SDK Min SDK

For all applications of the dataset

Self 49 975 100.0% 0.53% 2.1 0 32.1 21.7 74.8%
Sdk 49 975 100.0% 0.53% 6.5 0 32.1 21.7 8.04%

Hidden 49 975 100.0% 0.53% 0.5 0 32.1 21.7 17.42%
Total 49 975 100.0% 0.53% 9 0 32.1 21.7 23.76%

For applications with at least 1 shadow case

Self 234 0.47% 5.98% 438.1 18 31.4 22.4 74.8%
Sdk 11 755 23.52% 0.38% 27.6 5 32.4 22 8.04%

Hidden 1556 3.11% 0.71% 16.1 1 32.1 22.2 17.42%
Total 12 301 24.61% 0.42% 36.7 6 32.4 22 23.76%

Table 7: Shadow classes compared to SDK 34 for a dataset of 49 975 applications

1097
1098
1099
1100
1101
1102
1103
1104

1105
1106

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117

1118
1119

38

5.5. Shadow attacks in the wild

We report in the upper part of Table 7 the statistics about the whole dataset and the three
shadow attacks: “self” when a class shadows another one in the APK, “SDK” when a class of
the SDK shadows one of the APK, and “Hidden” when a hidden class of Android shadows one
of the APK. We observe that, on average, a few classes are shadowed by another class. Note
that the median value is 0 meaning that few apps shadow a lot of classes, but the majority
of apps do not shadow anything. The number of applications shadowing a hidden API is low,
which is an expected result as these classes should not be known by the developer. We observe
a consequent number of applications, 23.52%, of applications that perform SDK shadowing. It
can be explained by the fact that some classes that newly appear are embedded in the APK for
end users that have old versions of Android: it is suggested by the average value of Min SDK
which is 21.7 for the whole dataset: on average, an application can be run inside a smartphone
with API 21, which would require to embed all new classes from 22 to 34. This hypothesis
about missing classes is further investigated later in this section.

In the bottom part of Table 7, we give the same statistics but we excluded applications that
do not perform any shadowing. For those pairs of shadow classes, we disassembled them using
Apktool to perform a comparison using instructions represented in the Smali language. For self-
shadow, we compare the pair. For the shadowing of the SDK or Hidden class, we compare the
code found in the APK with implementations found in the emulator and android.jar of SDK
32, 33, and 34.

Self-shadowing We observe a low number of applications doing self-shadow attacks. For each
class that is shadowed, we compared its bytecode with the shadowed one. We observe that
74.8% are identical which suggests that the compilation process embeds the same class multiple
times but makes variations in headers or metadata values. We investigate later in Section 5.5.2
the case of malicious applications.

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

1133
1134
1135
1136
1137
1138

1139
1140
1141
1142
1143

39

Chapter 5 – Class loaders in the middle: confusing Android static analyzers

Figure 19: Redefined SDK classes, sorted by the first SDK they appeared in.

SDK shadowing For the shadowing of SDK classes, we observe a low ratio of identical classes.
This result could lead to the wrong conclusion that developers embed malicious versions of the
SDK classes, but our manual investigation shows that the difference is slight and probably due
to compiler optimization. To go further in the investigation, in Figure 19 we represent these
redefined classes with the following rules:

• The class is classified on the X abscissa in the figure according to the SDK it first appeared in.
• The class is counted as “green” (solid) if it first appeared in the SDK after the APK min

SDK (retro compatibility purpose).
• The class is counted as “red” (hatched) if it first appeared in the SDK before the APK min

SDK (which is useless for the application as the SDK version is always available).

We observe that the majority of classes are legitimate retro-compatibility additions of classes,
especially after SDK 21 (which is the average min SDK, cf. Table 7). Abnormal cases are
observed for classes that appeared in API versions 7 and before, 8, and 16. Table 8 reports the
top ten classes that shadow the SDK for the three mentioned versions. For SDK before 7, it
mainly concerns HTTP classes: for example, the class HttpParams is an interface, containing
limited bytecode that mostly matches the class already present on the emulator (98.03%
of shadowed classes are identical). HttpConnectionParams on the other hand differs from the
platform class and we observe only 4.99% of identical classes. Manual inspection of some
applications revealed that the two main reasons are:

• instead of checking if the methods attributes are null inline like Android does, applications
use the method org.apache.http.util.Args.notNull(). According to comments in the source

1144
1145
1146
1147
1148

1149
1150
1151
1152
1153

1154
1155
1156
1157
1158
1159
1160
1161
1162

1163
1164

40

5.5. Shadow attacks in the wild

code of Android8, the class was forked in 2007 from Apache ‘httpcomponents’ project.
Looking at the history of the project, the use of Args.notNull() was introduced in 20129.
This shows that applications are embedding code from more recent version of this library
without realizing their version will not be the used one.

• very small changes that we found can be attributed to the compilation process (e.g. swapping
registers: v0 is used instead of v1 and v1 instead of v0), but even if we consider them different,
they are very similar.

The remaining 4.99% of classes that are identical to the Android version are classes where the
body of the methods is replaced by stubs that throw RuntimeException("Stub!"). This code
corresponds to what we found in android.jar but not the code we found in the emulator, which
is surprising. Nevertheless, we decided to count them as identical, because android.jar is the
official jar file for developer, and stubs are replaced in the emulator: it is intended by Google
developers.

Other results of Table 8 can be similarly discussed: either they are identical with a high ratio, or
they are different because of small variations. When substantial differences appear it is mainly
because different versions of the same library have been used or an SDK class is embedded for
retro-compatibility.

TODO 22 ▶ cl-topsdk ◀

8. https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/core/java/org/
apache/http/params/HttpConnectionParams.java;drc=3bdd327f8532a79b83f575cc62e8eb09a1f93f3d?
9. https://github.com/apache/httpcomponents-core/commit/9104a92ea79e338d876b1b60f5cd2b243ba7069f?

1165
1166
1167
1168
1169
1170
1171

1172
1173
1174
1175
1176
1177

1178
1179
1180
1181

1182

1183
1184
1185

41

https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/core/java/org/apache/http/params/HttpConnectionParams.java;drc=3bdd327f8532a79b83f575cc62e8eb09a1f93f3d
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/core/java/org/apache/http/params/HttpConnectionParams.java;drc=3bdd327f8532a79b83f575cc62e8eb09a1f93f3d
https://github.com/apache/httpcomponents-core/commit/9104a92ea79e338d876b1b60f5cd2b243ba7069f

Chapter 5 – Class loaders in the middle: confusing Android static analyzers

Class Occurrences Identical ratio

redefined for SDK ≤ 7
Lorg/apache/http/params/HttpParams; 1318 98.03%
Lorg/apache/http/params/HttpConnectionParams; 1202 4.99%
Lorg/apache/http/conn/ConnectTimeoutException; 1200 35.0%
Lorg/apache/http/params/CoreConnectionPNames; 1190 99.92%
Lorg/xmlpull/v1/XmlPullParser; 1111 52.57%
Lorg/apache/http/conn/scheme/SocketFactory; 1074 87.52%
Lorg/apache/http/conn/scheme/HostNameResolver; 1072 87.59%
Lorg/apache/http/conn/scheme/LayeredSocketFactory; 963 89.41%
Lorg/json/JSONException; 945 0.0%
Lorg/apache/http/conn/ssl/X509HostnameVerifier; 886 0.79%

redefined for SDK = 8

Ljavax/xml/namespace/QName; 297 0.0%
Ljavax/xml/namespace/NamespaceContext; 226 98.23%
Landroid/net/http/SslError; 221 31.67%
Lorg/w3c/dom/UserDataHandler; 82 92.68%
Ljavax/xml/transform/TransformerConfigurationException; 73 69.86%
Ljavax/xml/transform/TransformerException; 73 0.0%
Lorg/w3c/dom/ls/LSException; 61 63.93%
Lorg/w3c/dom/TypeInfo; 54 88.89%
Lorg/w3c/dom/DOMConfiguration; 54 46.3%
Ljavax/xml/transform/TransformerFactoryConfigurationError; 52 0.0%

redefined for SDK = 16

Landroid/annotation/SuppressLint; 2634 98.48%
Landroid/annotation/TargetApi; 2634 98.48%
Landroid/media/MediaCodec$CryptoException; 11 18.18%
Landroid/media/MediaCryptoException; 10 20.0%
Landroid/view/accessibility/AccessibilityNodeProvider; 9 0.0%
Landroid/view/ActionProvider$VisibilityListener; 8 12.5%
Landroid/app/Notification$BigTextStyle; 7 0.0%
Landroid/app/Notification$Style; 7 0.0%
Landroid/util/LongSparseArray; 7 0.0%
Landroid/media/MediaPlayer$TrackInfo; 7 0.0%

Table 8: Shadow classes compared to SDK 34 for a dataset of 49 975 applications

Hidden shadowing For applications redefining hidden classes, on average, 16.1 classes are
redefined (cf bottom part of Table 7). The top 3 packages whose code actually differs from the
ones found in Android are java.util.stream, org.ccil.cowan.tagsoup and org.json:

• stream: when looking in more detail, we found that java.util.stream was only redefined by
6 applications, but the large number of classes redefined artificially puts the package at the
top of the list.

• tagsoup: TagSoup is a library for parsing HTML.
• json: there is only one hidden class in org.json, redefined by 821 applications: JSONObject$1.

org.json is a package in Android SDK, not a hidden one. However, JSONObject$1 is an

1186
1187
1188

1189
1190
1191
1192
1193
1194

42

5.5. Shadow attacks in the wild

anonymous class not provided by android.jar because its class JSONObject is an empty
stub, and thus, does not use JSONObject$1. Thus, this class falls in the category of hidden
platform classes.

All these hidden shadow classes are libraries included by the developers who probably did not
know that they were already embedded in Android.

5.5.2 Shadowing in malware applications
public class Reflection {
 private static final int ERROR_SET_APPLICATION_FAILED = -20;
 private static final String TAG = "Reflection";
 // ...

 static {
 try {
 Method declaredMethod = Class.class.getDeclaredMethod("forName", String.class);
 Method declaredMethod2 = Class.class.getDeclaredMethod("getDeclaredMethod",
String.class, Class[].class);
 Class cls = (Class) declaredMethod.invoke(null, "dalvik.system.VMRuntime");
 Method method = (Method) declaredMethod2.invoke(cls, "getRuntime", null);
 setHiddenApiExemptions = (Method) declaredMethod2.invoke(cls,
"setHiddenApiExemptions", new Class[]{String[].class});
 sVmRuntime = method.invoke(null, new Object[0]);
 } catch (Throwable th) { Log.e(TAG, "reflect bootstrap failed:", th); }
 System.loadLibrary("free-reflection");
 // ...
 }
 // ...
}

Listing 6: Implementation of Reflection found un classes11.dex (shadows Listing 7)

1195
1196
1197

1198
1199

1200

43

Chapter 5 – Class loaders in the middle: confusing Android static analyzers

public class Reflection {
 private static final String DEX = "ZGV4CjAzNQCl4EprGS2pXI/
v3OwlBrlfRnX5rmkKVdN0CwAAcA ... AoAAA==";
 private static final String TAG = "Reflection";

 private static native int unsealNative(int i);

 public static int unseal(Context context) {
 return (Build.VERSION.SDK_INT < 28 || BootstrapClass.exemptAll() ||
unsealByDexFile(context)) ? 0 : -1;
 }

 private static boolean unsealByDexFile(Context context) {
 // Decode DEX from base64 and load it as bytecode.
 // ...
 }
 // ...
}

Listing 7: Implementation of Reflection executed by ART (shadowed by Listing 6

The last column of Table 7 shows the proportion of applications considered as malware because
we arbitrarily fixed a threshold of 3 positive detections from VirusTotal reports. For the whole
dataset, we have 0.53% of applications considered as malware. We can see that an application
that uses self-shadowing is 10 times more likely to be a malware, when the proportion of malware
among application shadowing platform classes is the same as in the rest of the dataset. Thus, we
manually reversed self-shadowing malware, and found that the self-shadowing does not look to
be voluntary. The colliding classes are often the same implementation, occasionally with minor
differences, like different versions of a library. Additionally, we noticed multiple times internal
classes from com.google.android.gms.ads colliding with each other, but we believe that it is
due to bad processing during the compilation of the application.

The most notable case we found was an application that still exists on the Google
Play Store with the same package name10. This application contains a self-shadow class
me.weishu.reflection.Reflection that can be found in github, in the repository tiann/
FreeReflection¹¹. This class is used to disable Android restrictions on hidden API. At first
glance, we believed the shadowing to be done voluntarily for obfuscation purposes. The shadow
class that would be seen by a reverser is given in Listing 6: it contains some Java bytecode
performing reflection and loading a native library named “free-reflection” (the associated .so
is missing). The shadowed class that is really executed is summarized in Listing 7. It contains
a more obfuscated code: a DEX field storing base64 encoded DEX bytecode that is later used to

10. SHA256: C46A65EA1A797119CCC03C579B61C94FE8161308A3B6A8F55718D6ADAD112546
11. https://github.com/tiann/FreeReflection

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

1211
1212
1213
1214
1215
1216
1217
1218
1219

1220
1221

44

https://github.com/tiann/FreeReflection

5.7. Conclusion

load some new code. When looking at this new code stored in the field, we found that it does
almost the same thing as the code in the shadow class. Thus, we believe that the developer
has upgraded their obfuscation techniques, replacing a native library by inline base64 encoded
bytecode. The shadow attack could be unintentional, but it strengthens the masking of the new
implementation.

As a conclusion, we observed that:
• SDK shadowing is performed by 23.52% of applications but are unintentional: these classes

are embedded for retro-compatibility purpose or because the developer added a library
already present in Android;

• Hidden shadowing rarely occurs and is mainly due to the usage of libraries that Android
already contains;

• Malware perform more self-shadowing than goodware applications, and we found a sample
where self-shadowing would clearly mislead the reverser.

5.6 Threat to validity
During the analysis of the ART internals, we made the hypothesis that its different operating
modes are equivalent: we analyzed the loading process for classes stored as non-optimized .dex
format, and not for the pre-compiled .oat. It is a reasonable hypothesis to suppose that the two
implementations have been produced from the same algorithm using two compilation workflows.
Similarly, we assumed that the platform classes stored in boot.art are the same as the ones in
BOOTCLASSPATH. We confirm empirically our hypothesis on an Android Emulator, but we may
have missed some edge cases.

The comparison of Smali code can lead to underestimated values, for example, if the compilation
process performs minor modifications such as instruction reordering. The ratios reported in this
study for the comparison of code are thus a lower bound and would be higher with a more precise
comparison. In addition, platform classes are stored differently in older versions of Android
and could not be easily retrieved. For this reason, we did not compared the classes found in
applications to their versions older than SDK 32 to avoid producing unreliable statistics for
those versions.

5.7 Conclusion
This paper has presented three shadow attacks that allow malware developers to fool static
analysis tools when reversing an Android application. By including multiple classes with the
same name or by using the same name as a class of the Android SDK, the developer can mislead
a reverser or impact the result of a flow analysis, such as the ones of Androguard or Flowdroid.

We explored if such shadow attacks are present in as dataset of 49 975 applications . We found
that on average, 23.52% of applications are shadowing the SDK, mainly for retro-compatibility

1222
1223
1224
1225
1226

1227
1228
1229
1230
1231
1232
1233
1234

1235
1236
1237
1238
1239
1240
1241
1242

1243
1244
1245
1246
1247
1248
1249

1250
1251
1252
1253
1254

1255
1256

45

Chapter 5 – Class loaders in the middle: confusing Android static analyzers

purposes and library embedding. More suspiciously, 3.11% of applications are shadowing a
hidden class, which could lead to unexpected execution as these classes can appear/disappear
with the evolution of Android internals. Investigations for applications that defined classes
multiple times suggest that the compilation process or the inclusion of different versions of the
same library is the main explanation. Finally, when investigating malware samples, we found a
specific sample containing a shadow attack that would hide a part of the critical code from a
reverser studying the application.

Future work concerns the correctness of bytecode analysis. For now, we rely on the Smali
representation of the bytecode but the compilation process makes this comparison difficult.
We intend to better parse the bytecode to summarize it and be able to have a more reliable
comparison method.

1257
1258
1259
1260
1261
1262
1263

1264
1265
1266
1267

46

5.7. Conclusion

47

Chapter 6

Contribution n

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo,
cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum
impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari
voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre
audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa
et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum
necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae.
Itaque earum rerum defuturum, quas natura non depravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma omnis chorusque: 'chaere, Tite!' hinc hostis
mi Albucius, hinc inimicus. Sed iure Mucius. Ego autem mirari satis non queo unde hoc
sit tam insolens domesticarum rerum fastidium. Non est omnino hic docendi locus; sed ita
prorsus existimo, neque eum Torquatum, qui hoc primus cognomen invenerit, aut torquem
illum hosti detraxisse, ut aliquam ex eo est consecutus? – Laudem et caritatem, quae sunt
vitae sine metu degendae praesidia firmissima. – Filium morte multavit. – Si sine causa, nollem
me ab eo delectari, quod ista Platonis, Aristoteli, Theophrasti orationis ornamenta neglexerit.
Nam illud quidem physici, credere aliquid esse minimum, quod profecto numquam putavisset,
si a Polyaeno, familiari suo, geometrica discere maluisset quam illum etiam ipsum dedocere.
Sol Democrito magnus videtur, quippe homini erudito in geometriaque perfecto, huic pedalis
fortasse; tantum enim esse omnino in nostris poetis aut inertissimae segnitiae est aut fastidii
delicatissimi. Mihi quidem videtur, inermis ac nudus est. Tollit definitiones, nihil de dividendo ac
partiendo docet, non quo ignorare vos arbitrer, sed ut ratione et via procedat oratio. Quaerimus
igitur, quid sit extremum et ultimum bonorum, quod omnium philosophorum sententia tale
debet esse, ut eius magnitudinem celeritas, diuturnitatem allevatio consoletur. Ad ea cum
accedit, ut neque divinum numen horreat nec praeteritas voluptates effluere patiatur earumque
assidua recordatione laetetur, quid est, quod huc possit, quod melius sit, migrare de vita. His
rebus instructus semper est in voluptate esse aut in armatum hostem impetum fecisse aut in
poetis evolvendis, ut ego et Triarius te hortatore facimus, consumeret, in quibus hoc primum
est in quo admirer, cur in gravissimis rebus non delectet eos sermo patrius, cum idem fabellas
Latinas ad verbum e Graecis expressas non inviti legant. Quis enim tam inimicus paene nomini

1268

1269

1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

48

Romano est, qui Ennii Medeam aut Antiopam Pacuvii spernat aut reiciat, quod se isdem
Euripidis fabulis delectari dicat, Latinas litteras oderit? Synephebos ego, inquit, potius Caecilii
aut Andriam Terentii quam utramque Menandri legam? A quibus tantum dissentio, ut, cum
Sophocles vel optime scripserit Electram, tamen male conversam Atilii mihi legendam putem,
de quo Lucilius: 'ferreum scriptorem', verum, opinor, scriptorem tamen, ut legendus sit. Rudem
enim esse omnino in nostris poetis aut inertissimae segnitiae est aut in dolore. Omnis autem
privatione doloris putat Epicurus.

1301
1302
1303
1304
1305
1306
1307

49

Chapter 7

Conclusion

TODO 23 ▶ Conclude ◀

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim aeque doleamus animo,
cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et infinitum
impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea variari
voluptas distinguique possit, augeri amplificarique non possit. At etiam Athenis, ut e patre
audiebam facete et urbane Stoicos irridente, statua est in quo a nobis philosophia defensa
et collaudata est, cum id, quod maxime placeat, facere possimus, omnis voluptas assumenda
est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum
necessitatibus saepe eveniet, ut et voluptates repudiandae sint et molestiae non recusandae.
Itaque earum rerum defuturum, quas natura non depravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma omnis chorusque: 'chaere, Tite!' hinc hostis
mi Albucius, hinc inimicus. Sed iure Mucius. Ego autem mirari satis non queo unde hoc
sit tam insolens domesticarum rerum fastidium. Non est omnino hic docendi locus; sed ita
prorsus existimo, neque eum Torquatum, qui hoc primus cognomen invenerit, aut torquem
illum hosti detraxisse, ut aliquam ex eo est consecutus? – Laudem et caritatem, quae sunt
vitae sine metu degendae praesidia firmissima. – Filium morte multavit. – Si sine causa, nollem
me ab eo delectari, quod ista Platonis, Aristoteli, Theophrasti orationis ornamenta neglexerit.
Nam illud quidem physici, credere aliquid esse minimum, quod profecto numquam putavisset,
si a Polyaeno, familiari suo, geometrica discere maluisset quam illum etiam ipsum dedocere.
Sol Democrito magnus videtur, quippe homini erudito in geometriaque perfecto, huic pedalis
fortasse; tantum enim esse omnino in nostris poetis aut inertissimae segnitiae est aut fastidii
delicatissimi. Mihi quidem videtur, inermis ac nudus est. Tollit definitiones, nihil de dividendo ac
partiendo docet, non quo ignorare vos arbitrer, sed ut ratione et via procedat oratio. Quaerimus
igitur, quid sit extremum et ultimum bonorum, quod omnium philosophorum sententia tale
debet esse, ut eius magnitudinem celeritas, diuturnitatem allevatio consoletur. Ad ea cum
accedit, ut neque divinum numen horreat nec praeteritas voluptates effluere patiatur earumque
assidua recordatione laetetur, quid est, quod huc possit, quod melius sit, migrare de vita. His
rebus instructus semper est in voluptate esse aut in armatum hostem impetum fecisse aut in
poetis evolvendis, ut ego et Triarius te hortatore facimus, consumeret, in quibus hoc primum

1308

1309

1310

1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339

50

est in quo admirer, cur in gravissimis rebus non delectet eos sermo patrius, cum idem fabellas
Latinas ad verbum e Graecis expressas non inviti legant. Quis enim tam inimicus paene nomini
Romano est, qui Ennii Medeam aut Antiopam Pacuvii spernat aut reiciat, quod se isdem
Euripidis fabulis delectari dicat, Latinas litteras oderit? Synephebos ego, inquit, potius Caecilii
aut Andriam Terentii quam utramque Menandri legam? A quibus tantum dissentio, ut, cum
Sophocles vel optime scripserit Electram, tamen male conversam Atilii mihi legendam putem,
de quo Lucilius: 'ferreum scriptorem', verum, opinor, scriptorem tamen, ut legendus sit. Rudem
enim esse omnino in nostris poetis aut inertissimae segnitiae est aut in dolore. Omnis autem
privatione doloris putat Epicurus.

1340
1341
1342
1343
1344
1345
1346
1347
1348

51

Bibliography

[1] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016. AndroZoo:
Collecting Millions of Android Apps for the Research Community. In 13th Working
Conference on Mining Software Repositories (MSR), May 2016. 468–471.

[2] Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2013. Instrumenting Android and Java
Applications as Easy as abc. In Fourth International Conference on Runtime Verification,
September 2013. Springer Berlin Heidelberg, Rennes, France, 364–381. https://doi.org/10.
1007/978-3-642-40787-1_26

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise
Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android
Apps. In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, June 05, 2014. ACM Press, Edinburgh, UK, 259–269. https://doi.org/10.1145/
2666356.2594299

[4] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and Depth-First Exploration for Sys-
tematic Testing of Android Apps. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA
2013, Part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, 2013. ACM,
641–660. https://doi.org/10.1145/2509136.2509549

[5] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2013. Thresher: Precise
Refutations for Heap Reachability. ACM SIGPLAN Notices 48, 6 (June 2013), 275–286.
https://doi.org/10.1145/2499370.2462186

[6] Amiangshu Bosu, Fang Liu, Danfeng (Daphne) Yao, and Gang Wang. 2017. Collusive Data
Leak and More: Large-scale Threat Analysis of Inter-app Communications. In Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security, April 02,
2017. ACM, Abu Dhabi United Arab Emirates, 71–85. https://doi.org/10.1145/3052973.
3053004

[7] Kwanghoon Choi and Byeong-Mo Chang. 2014. A Type and Effect System for Activation
Flow of Components in Android Programs. Information Processing Letters 114, 11 (2014),
620–627. https://doi.org/10.1016/j.ipl.2014.05.011

1349

1350
1351
1352

1353
1354
1355
1356

1357
1358
1359
1360
1361
1362

1363
1364
1365
1366
1367

1368
1369
1370

1371
1372
1373
1374
1375

1376
1377
1378

52

https://doi.org/10.1007/978-3-642-40787-1_26
https://doi.org/10.1007/978-3-642-40787-1_26
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2499370.2462186
https://doi.org/10.1145/3052973.3053004
https://doi.org/10.1145/3052973.3053004
https://doi.org/10.1016/j.ipl.2014.05.011

[8] Anthony Desnos and Geoffroy Gueguen. 2011. Android: From Reversing to Decompila-
tion. Black Hat Abu Dhabi (2011). Retrieved from https://media.blackhat.com/bh-ad-11/
Desnos/bh-ad-11-DesnosGueguen-Andriod-Reversing_to_Decompilation_WP.pdf

[9] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin Li,
Xueqiang Wang, and Xiaofeng Wang. 2018. Things You May Not Know About Android
(Un)Packers: A Systematic Study based on Whole-System Emulation. In 24th Annual
Network and Distributed System Security Symposium, 2018.

[10] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2012. A survey
on automated dynamic malware-analysis techniques and tools. ACM Computing Surveys
44, 2 (2012). https://doi.org/10.1145/2089125.2089126

[11] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones. In 9th USENIX Symposium on Operat-
ing Systems Design and Implementation, October 2010. USENIX Association, Vancouver,
BC, Canada, 393–407.

[12] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and
Matthew Smith. 2012. Why Eve and Mallory Love Android: An Analysis of Android SSL
(in)Security. In Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, October 16, 2012. ACM, Raleigh North Carolina USA, 50–61. https://doi.
org/10.1145/2382196.2382205

[13] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. 2013. Structural
Detection of Android Malware Using Embedded Call Graphs. In Proceedings of the 2013
ACM Workshop on Artificial Intelligence and Security, November 04, 2013. ACM, Berlin
Germany, 45–54. https://doi.org/10.1145/2517312.2517315

[14] Dimitris Geneiatakis, Igor Nai Fovino, Ioannis Kounelis, and Pasquale Stirparo. 2015. A
Permission Verification Approach for Android Mobile Applications. Computers & Security
49, (March 2015), 192–205. https://doi.org/10.1016/j.cose.2014.10.005

[15] Li Gong. 1998. Secure Java class loading. IEEE Internet Computing 2, 6 (November 1998),
56–61. https://doi.org/10.1109/4236.735987

[16] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen Nguyen, and
Martin C. Rinard. 2015. Information Flow Analysis of Android Applications in DroidSafe.
In 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2015, 2015. The Internet Society.

1379
1380
1381

1382
1383
1384
1385

1386
1387
1388

1389
1390
1391
1392
1393

1394
1395
1396
1397
1398

1399
1400
1401
1402

1403
1404
1405

1406
1407

1408
1409
1410
1411

53

https://media.blackhat.com/bh-ad-11/Desnos/bh-ad-11-DesnosGueguen-Andriod-Reversing_to_Decompilation_WP.pdf
https://media.blackhat.com/bh-ad-11/Desnos/bh-ad-11-DesnosGueguen-Andriod-Reversing_to_Decompilation_WP.pdf
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1145/2517312.2517315
https://doi.org/10.1016/j.cose.2014.10.005
https://doi.org/10.1109/4236.735987

Bibliography

[17] Yi He, Yacong Gu, Purui Su, Kun Sun, Yajin Zhou, Zhi Wang, and Qi Li. 2023. A
Systematic Study of Android Non-SDK (Hidden) Service API Security. IEEE Transactions
on Dependable and Secure Computing 20, 2 (March 2023), 1609–1623. https://doi.org/10.
1109/TDSC.2022.3160872

[18] Johannes Hoffmann, Martin Ussath, Thorsten Holz, and Michael Spreitzenbarth. 2013.
Slicing Droids: Program Slicing for Smali Code. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing (SAC '13), March 18, 2013. Association for Computing
Machinery, New York, NY, USA, 1844–1851. https://doi.org/10.1145/2480362.2480706

[19] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh Reddy,
Jeffrey S. Foster, and Todd Millstein. 2012. Dr. Android and Mr. Hide: Fine-Grained
Permissions in Android Applications. In Proceedings of the Second ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, October 19, 2012. ACM, Raleigh
North Carolina USA, 3–14. https://doi.org/10.1145/2381934.2381938

[20] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. 2014. Android
Taint Flow Analysis for App Sets. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on the State of the Art in Java Program Analysis, June 12, 2014. ACM,
Edinburgh United Kingdom, 1–6. https://doi.org/10.1145/2614628.2614633

[21] Pavel Kriz and Filip Maly. 2015. Provisioning of application modules to Android devices.
In 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA), April
2015. 423–426. https://doi.org/10.1109/RADIOELEK.2015.7129009

[22] Li Li, Alexandre Bartel, Tegawende F. Bissyande, Jacques Klein, Yves Le Traon, Steven
Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick McDaniel. 2015.
IccTA: Detecting Inter-Component Privacy Leaks in Android Apps. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, May 2015. IEEE, Florence,
Italy, 280–291. https://doi.org/10.1109/ICSE.2015.48

[23] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2015.
ApkCombiner: Combining Multiple Android Apps to Support Inter-App Analysis. In ICT
Systems Security and Privacy Protection, 2015. Springer International Publishing, Cham,
513–527. https://doi.org/10.1007/978-3-319-18467-8_34

[24] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel,
Damien Octeau, Jacques Klein, and Yves Le Traon. 2017. Static Analysis of Android Apps:
A Systematic Literature Review. Information and Software Technology 88, (2017), 67–95.
https://doi.org/10.1016/j.infsof.2017.04.001

[25] Li Li, Tegawendé F. Bissyandé, Yves Le Traon, and Jacques Klein. 2016. Accessing
Inaccessible Android APIs: An Empirical Study. In 2016 IEEE International Conference

1412
1413
1414
1415

1416
1417
1418
1419

1420
1421
1422
1423
1424

1425
1426
1427
1428

1429
1430
1431

1432
1433
1434
1435
1436

1437
1438
1439
1440

1441
1442
1443
1444

1445
1446

54

https://doi.org/10.1109/TDSC.2022.3160872
https://doi.org/10.1109/TDSC.2022.3160872
https://doi.org/10.1145/2480362.2480706
https://doi.org/10.1145/2381934.2381938
https://doi.org/10.1145/2614628.2614633
https://doi.org/10.1109/RADIOELEK.2015.7129009
https://doi.org/10.1109/ICSE.2015.48
https://doi.org/10.1007/978-3-319-18467-8_34
https://doi.org/10.1016/j.infsof.2017.04.001

on Software Maintenance and Evolution (ICSME), October 2016. 411–422. https://doi.
org/10.1109/ICSME.2016.35

[26] Sheng Liang and Gilad Bracha. 1998. Dynamic class loading in the Java virtual machine.
SIGPLAN Not. 33, 10 (October 1998), 36–44. https://doi.org/10.1145/286942.286945

[27] Shuying Liang, Andrew W. Keep, Matthew Might, Steven Lyde, Thomas Gilray, Petey
Aldous, and David Van Horn. 2013. Sound and Precise Malware Analysis for Android
via Pushdown Reachability and Entry-Point Saturation. In Proceedings of the Third
ACM Workshop on Security and Privacy in Smartphones & Mobile Devices (SPSM '13),
November 08, 2013. Association for Computing Machinery, New York, NY, USA, 21–32.
https://doi.org/10.1145/2516760.2516769

[28] Max Lillack, Christian Kästner, and Eric Bodden. 2014. Tracking Load-Time Configu-
ration Options. In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering (ASE '14), September 15, 2014. Association for Comput-
ing Machinery, New York, NY, USA, 445–456. https://doi.org/10.1145/2642937.2643001

[29] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and Detecting
Performance Bugs for Smartphone Applications. In Proceedings of the 36th International
Conference on Software Engineering, May 31, 2014. ACM, Hyderabad India, 1013–1024.
https://doi.org/10.1145/2568225.2568229

[30] Linghui Luo, Felix Pauck, Goran Piskachev, Manuel Benz, Ivan Pashchenko, Martin Mory,
Eric Bodden, Ben Hermann, and Fabio Massacci. 2022. TaintBench: Automatic Real-World
Malware Benchmarking of Android Taint Analyses. Empirical Software Engineering 27, 1
(January 2022), 16. https://doi.org/10.1007/s10664-021-10013-5

[31] Noah Mauthe, Ulf Kargén, and Nahid Shahmehri. 2021. A Large-Scale Empirical Study of
Android App Decompilation. In 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), March 2021. 400–410. https://doi.org/10.1109/
SANER50967.2021.00044

[32] Jean-Marie Mineau and Jean-François Lalande. 2024. Evaluating the Reusability of
Android Static Analysis Tools. In ICSR 2024 - 21st International Conference on Software
and Systems Reuse (LNCS), June 2024. Springer, Limassol, Cyprus, 153–170. https://doi.
org/10.1007/978-3-031-66459-5_10

[33] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick McDaniel.
2015. Composite Constant Propagation: Application to Android Inter-Component Com-
munication Analysis. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, May 2015. IEEE, Florence, Italy, 77–88. https://doi.org/10.1109/ICSE.2015.
30

1447
1448

1449
1450

1451
1452
1453
1454
1455
1456

1457
1458
1459
1460

1461
1462
1463
1464

1465
1466
1467
1468

1469
1470
1471
1472

1473
1474
1475
1476

1477
1478
1479
1480
1481

55

https://doi.org/10.1109/ICSME.2016.35
https://doi.org/10.1145/286942.286945
https://doi.org/10.1145/2516760.2516769
https://doi.org/10.1145/2642937.2643001
https://doi.org/10.1145/2568225.2568229
https://doi.org/10.1007/s10664-021-10013-5
https://doi.org/10.1109/SANER50967.2021.00044
https://doi.org/10.1109/SANER50967.2021.00044
https://doi.org/10.1007/978-3-031-66459-5_10
https://doi.org/10.1109/ICSE.2015.30
https://doi.org/10.1109/ICSE.2015.30

Bibliography

[34] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques
Klein, and Yves Le Traon. 2013. Effective Inter-Component communication mapping in
android: An essential step towards holistic security analysis. In 22nd USENIX Security
Symposium (USENIX Security 13), 2013. 543–558.

[35] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android Taint Analysis Tools
Keep Their Promises?. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering, October 26, 2018. ACM, Lake Buena Vista FL USA, 331–341. https://doi.org/
10.1145/3236024.3236029

[36] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo
Cavallaro. 2018. TESSERACT: Eliminating Experimental Bias in Malware Classification
across Space and Time. (2018).

[37] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and Gio-
vanni Vigna. 2014. Execute This! Analyzing Unsafe and Malicious Dynamic Code Loading
in Android Applications. In 21st Annual Network and Distributed System Security Sympo-
sium, NDSS 2014, San Diego, California, USA, February 23-26, 2014, 2014. The Internet
Society.

[38] Bradley Reaves, Jasmine Bowers, Sigmund Albert Gorski III, Olabode Anise, Rahul
Bobhate, Raymond Cho, Hiranava Das, Sharique Hussain, Hamza Karachiwala, Nolen
Scaife, Byron Wright, Kevin Butler, William Enck, and Patrick Traynor. 2016. *droid:
Assessment and Evaluation of Android Application Analysis Tools. ACM Computing
Surveys 49, 3 (October 2016), 1–30. https://doi.org/10.1145/2996358

[39] Atanas Rountev and Dacong Yan. 2014. Static Reference Analysis for GUI Objects in
Android Software. In Proceedings of Annual IEEE/ACM International Symposium on
Code Generation and Optimization, February 15, 2014. ACM, Orlando FL USA, 143–153.
https://doi.org/10.1145/2544137.2544159

[40] Feng Shen, Namita Vishnubhotla, Chirag Todarka, Mohit Arora, Babu Dhandapani, Eric
John Lehner, Steven Y. Ko, and Lukasz Ziarek. 2014. Information Flows as a Permission
Mechanism. In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, September 15, 2014. ACM, Vasteras Sweden, 515–526. https://doi.
org/10.1145/2642937.2643018

[41] Dennis Titze and Julian Schutte. 2015. Apparecium: Revealing Data Flows in Android
Applications. In 2015 IEEE 29th International Conference on Advanced Information
Networking and Applications, March 2015. IEEE, Gwangiu, South Korea, 579–586. https://
doi.org/10.1109/AINA.2015.239

1482
1483
1484
1485

1486
1487
1488
1489
1490

1491
1492
1493

1494
1495
1496
1497
1498

1499
1500
1501
1502
1503

1504
1505
1506
1507

1508
1509
1510
1511
1512

1513
1514
1515
1516

56

https://doi.org/10.1145/3236024.3236029
https://doi.org/10.1145/2996358
https://doi.org/10.1145/2544137.2544159
https://doi.org/10.1145/2642937.2643018
https://doi.org/10.1109/AINA.2015.239

[42] Akihiko Tozawa and Masami Hagiya. 2002. Formalization and Analysis of Class Loading
in Java. Higher-Order and Symbolic Computation 15, 1 (March 2002), 7–55. https://doi.
org/10.1023/A:1019912130555

[43] Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin, and Patrick
Tague. 2014. A5: Automated Analysis of Adversarial Android Applications. In Proceedings
of the 4th ACM Workshop on Security and Privacy in Smartphones & Mobile Devices,
November 07, 2014. ACM, Scottsdale Arizona USA, 39–50. https://doi.org/10.1145/
2666620.2666630

[44] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A Precise and
General Inter-component Data Flow Analysis Framework for Security Vetting of Android
Apps. In ACM SIGSAC Conference on Computer and Communications Security, Novem-
ber 2014. ACM, Scottsdale Arizona USA, 1329–1341. https://doi.org/10.1145/2660267.
2660357

[45] Erik Ramsgaard Wognsen, Henrik Søndberg Karlsen, Mads Chr. Olesen, and René Rydhof
Hansen. 2014. Formalisation and Analysis of Dalvik Bytecode. Science of Computer
Programming 92, (October 2014), 25–55. https://doi.org/10.1016/j.scico.2013.11.037

[46] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu. 2015. Effective Real-
Time Android Application Auditing. In 2015 IEEE Symposium on Security and Privacy,
May 2015. IEEE, San Jose, CA, 899–914. https://doi.org/10.1109/SP.2015.60

[47] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015. Static
Control-Flow Analysis of User-Driven Callbacks in Android Applications. In 2015 IEEE/
ACM 37th IEEE International Conference on Software Engineering, May 2015. IEEE,
Florence, Italy, 89–99. https://doi.org/10.1109/ICSE.2015.31

[48] Yury Zhauniarovich, Maqsood Ahmad, Olga Gadyatskaya, Bruno Crispo, and Fabio Mas-
sacci. 2015. StaDynA: Addressing the Problem of Dynamic Code Updates in the Security
Analysis of Android Applications. In Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy, March 02, 2015. ACM, San Antonio Texas USA, 37–48.
https://doi.org/10.1145/2699026.2699105

[49] Wenwen Zhou, Yang Yongzhi, and Jiejuan Wang. 2022. Dynamic Class Generating and
Loading Technology in Android Web Application. In 2022 International Symposium on
Networks, Computers and Communications (ISNCC), July 2022. 1–6. https://doi.org/10.
1109/ISNCC55209.2022.9851782

1517
1518
1519

1520
1521
1522
1523
1524

1525
1526
1527
1528
1529

1530
1531
1532

1533
1534
1535

1536
1537
1538
1539

1540
1541
1542
1543
1544

1545
1546
1547
1548

57

https://doi.org/10.1023/A:1019912130555
https://doi.org/10.1145/2666620.2666630
https://doi.org/10.1145/2666620.2666630
https://doi.org/10.1145/2660267.2660357
https://doi.org/10.1145/2660267.2660357
https://doi.org/10.1016/j.scico.2013.11.037
https://doi.org/10.1109/SP.2015.60
https://doi.org/10.1109/ICSE.2015.31
https://doi.org/10.1145/2699026.2699105
https://doi.org/10.1109/ISNCC55209.2022.9851782
https://doi.org/10.1109/ISNCC55209.2022.9851782

Titre : TODO 24 ▶ Find a title ◀

Mots clés : Android, analyse de maliciels, analyse statique, chargement de classe, brouillage
de code

Résumé : Lorem ipsum dolor sit amet, con-
sectetur adipiscing elit, sed do eiusmod tem-
por incididunt ut labore et dolore magnam
aliquam quaerat voluptatem. Ut enim aeque
doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod
aeternum et infinitum impendere malum nobis
opinemur. Quod idem licet transferre in volup-
tatem, ut postea variari voluptas distinguique
possit, augeri amplificarique non possit. At
etiam Athenis, ut e patre audiebam facete et
urbane Stoicos irridente, statua est in quo a
nobis philosophia defensa et collaudata est,
cum id, quod maxime placeat, facere pos-

simus, omnis voluptas assumenda est, omnis
dolor repellendus. Temporibus autem quibus-
dam et aut officiis debitis aut rerum necessitat-
ibus saepe eveniet, ut et voluptates repudian-
dae sint et molestiae non recusandae. Itaque
earum rerum defuturum, quas natura non de-
pravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma
omnis chorusque: 'chaere, Tite!' hinc hostis mi
Albucius, hinc inimicus. Sed iure Mucius. Ego
autem mirari satis non queo unde hoc sit tam
insolens domesticarum rerum fastidium. Non
est omnino hic docendi locus; sed ita prorsus
existimo, neque.

Title : TODO 25 ▶ Find a title ◀

Keywords: Android, malware analysis, static analysis, class loading, code obfuscation, TODO 26

▶ More Keywords ◀

1549

1550
1551

1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566

1567

1568
1569

Abstract: Lorem ipsum dolor sit amet, con-
sectetur adipiscing elit, sed do eiusmod tem-
por incididunt ut labore et dolore magnam
aliquam quaerat voluptatem. Ut enim aeque
doleamus animo, cum corpore dolemus, fieri
tamen permagna accessio potest, si aliquod
aeternum et infinitum impendere malum nobis
opinemur. Quod idem licet transferre in volup-
tatem, ut postea variari voluptas distinguique
possit, augeri amplificarique non possit. At
etiam Athenis, ut e patre audiebam facete et
urbane Stoicos irridente, statua est in quo a
nobis philosophia defensa et collaudata est,
cum id, quod maxime placeat, facere pos-

simus, omnis voluptas assumenda est, omnis
dolor repellendus. Temporibus autem quibus-
dam et aut officiis debitis aut rerum necessitat-
ibus saepe eveniet, ut et voluptates repudian-
dae sint et molestiae non recusandae. Itaque
earum rerum defuturum, quas natura non de-
pravata desiderat. Et quem ad me accedis,
saluto: 'chaere,' inquam, 'Tite!' lictores, turma
omnis chorusque: 'chaere, Tite!' hinc hostis mi
Albucius, hinc inimicus. Sed iure Mucius. Ego
autem mirari satis non queo unde hoc sit tam
insolens domesticarum rerum fastidium. Non
est omnino hic docendi locus; sed ita prorsus
existimo, neque.

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584

	DRAFT -
	Introduction
	Background
	Something
	Something Else

	Related Work
	RASTA
	Introduction
	Related Work
	Application Datasets
	Static Analysis Tools Reusability

	Methodology
	Collecting Tools
	Source Code Selection and Building Process
	Runtime Conditions
	Dataset

	Experiments
	RQ1: Re-Usability Evaluation
	RQ2: Size, SDK and Date Influence
	RQ3: Malware vs Goodware

	Discussion
	State-of-the-art comparison
	Recommendations
	Threats to validity

	Conclusion

	Class loaders in the middle: confusing Android static analyzers
	Introduction
	State of the art
	Analyzing the class loading process
	Class loaders
	Delegation
	Determining platform classes
	Multiple DEX files

	Obfuscation Techniques
	Obfuscation Techniques
	Impact on static analysis tools
	Jadx
	Apktool
	Androguard
	Flowdroid

	Shadow attacks in the wild
	Results
	Shadowing in malware applications

	Threat to validity
	Conclusion

	Contribution n
	Conclusion
	Bibliography

