refactoring

This commit is contained in:
Jean-Marie Mineau 2025-03-11 11:32:53 +01:00
parent 95601d2dbe
commit b476d04b78
Signed by: histausse
GPG key ID: B66AEEDA9B645AD2
8 changed files with 1542 additions and 1514 deletions

View file

@ -16,6 +16,10 @@ logger.remove() # remove androguard logs
FRIDA_SCRIPT = Path(__file__).parent / "hook.js"
STACK_CONSUMER_B64 = Path(__file__).parent / "StackConsumer.dex.b64"
# The number of bytes used to encode a java hash (from Object.hashCode or System.identiyHashCode)
# The type is 'int', so it sould be a 32bit signed value?
HASH_NB_BYTES = 4
# Define handler to event generated by the scripts
def on_message(message, data, data_storage: dict, file_storage: Path):
@ -137,7 +141,7 @@ def handle_cnstr_new_inst_data(data, data_storage: dict):
def handle_load_dex(data, data_storage: dict, file_storage: Path):
dex = data["dex"]
classloader_class = data["classloader_class"]
classloader = data["classloader"]
classloader = data["classloader"].hex()
short_class = classloader_class.split("/")[-1].removesuffix(";")
files = []
print("DEX file loaded:")

View file

@ -183,7 +183,7 @@ Java.perform(() => {
let path = Path.of(sourceName, []);
let dex = Files.readAllBytes(path);
let b64 = Base64.encodeToString(dex, Base64.DEFAULT.value);
let classloader_class = "";
let classloader_class = null;
let classloader_id = System.identityHashCode(loader);
if (loader !== null) {
classloader_class = loader.getClass().descriptorString();

View file

@ -7,8 +7,8 @@ use androscalpel::Apk;
use patcher::{
labeling,
transform_method,
ReflectionData, // ReflectionInvokeData, ReflectionClassNewInstData, ReflectionCnstrNewInstData,
reflection_patcher::transform_method,
runtime_data::RuntimeData, // ReflectionInvokeData, ReflectionClassNewInstData, ReflectionCnstrNewInstData,
};
use clap::Parser;
@ -40,9 +40,9 @@ fn main() {
.unwrap()
.read_to_string(&mut json)
.unwrap();
let reflection_data: ReflectionData = serde_json::from_str(&json).unwrap();
let reflection_data: RuntimeData = serde_json::from_str(&json).unwrap();
/*
let reflection_data = ReflectionData {
let reflection_data = RuntimeData {
invoke_data: vec![
ReflectionInvokeData {
method: IdMethod::from_smali(

178
patcher/src/dex_types.rs Normal file
View file

@ -0,0 +1,178 @@
use androscalpel::{IdMethod, IdType};
use anyhow::{bail, Result};
use std::sync::LazyLock;
pub(crate) static MTH_INVOKE: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali(
"Ljava/lang/reflect/Method;->invoke(Ljava/lang/Object;[Ljava/lang/Object;)Ljava/lang/Object;",
)
.unwrap()
});
pub(crate) static MTH_GET_NAME: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/reflect/Method;->getName()Ljava/lang/String;").unwrap()
});
pub(crate) static MTH_GET_PARAMS_TY: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/reflect/Method;->getParameterTypes()[Ljava/lang/Class;")
.unwrap()
});
pub(crate) static MTH_GET_RET_TY: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/reflect/Method;->getReturnType()Ljava/lang/Class;").unwrap()
});
pub(crate) static MTH_GET_DEC_CLS: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/reflect/Method;->getDeclaringClass()Ljava/lang/Class;")
.unwrap()
});
pub(crate) static STR_EQ: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/String;->equals(Ljava/lang/Object;)Z").unwrap()
});
pub(crate) static CLASS_NEW_INST: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/Class;->newInstance()Ljava/lang/Object;").unwrap()
});
pub(crate) static CNSTR_NEW_INST: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali(
"Ljava/lang/reflect/Constructor;->newInstance([Ljava/lang/Object;)Ljava/lang/Object;",
)
.unwrap()
});
pub(crate) static CNSTR_GET_PARAMS_TY: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/reflect/Constructor;->getParameterTypes()[Ljava/lang/Class;")
.unwrap()
});
pub(crate) static CNSTR_GET_DEC_CLS: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/reflect/Constructor;->getDeclaringClass()Ljava/lang/Class;")
.unwrap()
});
pub(crate) static OBJ_TO_SCAL_BOOL: LazyLock<IdMethod> =
LazyLock::new(|| IdMethod::from_smali("Ljava/lang/Boolean;->booleanValue()Z").unwrap());
pub(crate) static OBJ_TO_SCAL_BYTE: LazyLock<IdMethod> =
LazyLock::new(|| IdMethod::from_smali("Ljava/lang/Byte;->byteValue()B").unwrap());
pub(crate) static OBJ_TO_SCAL_SHORT: LazyLock<IdMethod> =
LazyLock::new(|| IdMethod::from_smali("Ljava/lang/Short;->shortValue()S").unwrap());
pub(crate) static OBJ_TO_SCAL_CHAR: LazyLock<IdMethod> =
LazyLock::new(|| IdMethod::from_smali("Ljava/lang/Character;->charValue()C").unwrap());
pub(crate) static OBJ_TO_SCAL_INT: LazyLock<IdMethod> =
LazyLock::new(|| IdMethod::from_smali("Ljava/lang/Integer;->intValue()I").unwrap());
pub(crate) static OBJ_TO_SCAL_LONG: LazyLock<IdMethod> =
LazyLock::new(|| IdMethod::from_smali("Ljava/lang/Long;->longValue()J").unwrap());
pub(crate) static OBJ_TO_SCAL_FLOAT: LazyLock<IdMethod> =
LazyLock::new(|| IdMethod::from_smali("Ljava/lang/Float;->floatValue()F").unwrap());
pub(crate) static OBJ_TO_SCAL_DOUBLE: LazyLock<IdMethod> =
LazyLock::new(|| IdMethod::from_smali("Ljava/lang/Double;->doubleValue()D").unwrap());
pub(crate) static OBJ_OF_SCAL_BOOL: LazyLock<IdType> =
LazyLock::new(|| IdType::from_smali("Ljava/lang/Boolean;").unwrap());
pub(crate) static OBJ_OF_SCAL_BYTE: LazyLock<IdType> =
LazyLock::new(|| IdType::from_smali("Ljava/lang/Byte;").unwrap());
pub(crate) static OBJ_OF_SCAL_SHORT: LazyLock<IdType> =
LazyLock::new(|| IdType::from_smali("Ljava/lang/Short;").unwrap());
pub(crate) static OBJ_OF_SCAL_CHAR: LazyLock<IdType> =
LazyLock::new(|| IdType::from_smali("Ljava/lang/Character;").unwrap());
pub(crate) static OBJ_OF_SCAL_INT: LazyLock<IdType> =
LazyLock::new(|| IdType::from_smali("Ljava/lang/Integer;").unwrap());
pub(crate) static OBJ_OF_SCAL_LONG: LazyLock<IdType> =
LazyLock::new(|| IdType::from_smali("Ljava/lang/Long;").unwrap());
pub(crate) static OBJ_OF_SCAL_FLOAT: LazyLock<IdType> =
LazyLock::new(|| IdType::from_smali("Ljava/lang/Float;").unwrap());
pub(crate) static OBJ_OF_SCAL_DOUBLE: LazyLock<IdType> =
LazyLock::new(|| IdType::from_smali("Ljava/lang/Double;").unwrap());
pub(crate) static SCAL_TO_OBJ_BOOL: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/Boolean;->valueOf(Z)Ljava/lang/Boolean;").unwrap()
});
pub(crate) static SCAL_TO_OBJ_BYTE: LazyLock<IdMethod> =
LazyLock::new(|| IdMethod::from_smali("Ljava/lang/Byte;->valueOf(B)Ljava/lang/Byte;").unwrap());
pub(crate) static SCAL_TO_OBJ_SHORT: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/Short;->valueOf(S)Ljava/lang/Short;").unwrap()
});
pub(crate) static SCAL_TO_OBJ_CHAR: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/Character;->valueOf(C)Ljava/lang/Character;").unwrap()
});
pub(crate) static SCAL_TO_OBJ_INT: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/Integer;->valueOf(I)Ljava/lang/Integer;").unwrap()
});
pub(crate) static SCAL_TO_OBJ_LONG: LazyLock<IdMethod> =
LazyLock::new(|| IdMethod::from_smali("Ljava/lang/Long;->valueOf(J)Ljava/lang/Long;").unwrap());
pub(crate) static SCAL_TO_OBJ_FLOAT: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/Float;->valueOf(F)Ljava/lang/Float;").unwrap()
});
pub(crate) static SCAL_TO_OBJ_DOUBLE: LazyLock<IdMethod> = LazyLock::new(|| {
IdMethod::from_smali("Ljava/lang/Double;->valueOf(D)Ljava/lang/Double;").unwrap()
});
pub(crate) static OBJECT_TY: LazyLock<IdType> =
LazyLock::new(|| IdType::from_smali("Ljava/lang/Object;").unwrap());
/// Get the method that convert a object to its scalar conterpart (eg `java.lang.Integer` to `int` with
/// `Ljava/lang/Integer;->intValue()I`)
///
/// `scalar_ty` is the type of the scalar (eg `I`)
pub fn get_obj_to_scalar_method(scalar_ty: &IdType) -> Result<IdMethod> {
if scalar_ty == &IdType::boolean() {
Ok(OBJ_TO_SCAL_BOOL.clone())
} else if scalar_ty == &IdType::byte() {
Ok(OBJ_TO_SCAL_BYTE.clone())
} else if scalar_ty == &IdType::short() {
Ok(OBJ_TO_SCAL_SHORT.clone())
} else if scalar_ty == &IdType::char() {
Ok(OBJ_TO_SCAL_CHAR.clone())
} else if scalar_ty == &IdType::int() {
Ok(OBJ_TO_SCAL_INT.clone())
} else if scalar_ty == &IdType::long() {
Ok(OBJ_TO_SCAL_LONG.clone())
} else if scalar_ty == &IdType::float() {
Ok(OBJ_TO_SCAL_FLOAT.clone())
} else if scalar_ty == &IdType::double() {
Ok(OBJ_TO_SCAL_DOUBLE.clone())
} else {
bail!("{} is not a scalar", scalar_ty.__str__())
}
}
/// Get the object associated to a scalar (eg `java.lang.Integer` for `int`)
///
/// `scalar_ty` is the type of the scalar (eg `I`)
pub fn get_obj_of_scalar(scalar_ty: &IdType) -> Result<IdType> {
if scalar_ty == &IdType::boolean() {
Ok(OBJ_OF_SCAL_BOOL.clone())
} else if scalar_ty == &IdType::byte() {
Ok(OBJ_OF_SCAL_BYTE.clone())
} else if scalar_ty == &IdType::short() {
Ok(OBJ_OF_SCAL_SHORT.clone())
} else if scalar_ty == &IdType::char() {
Ok(OBJ_OF_SCAL_CHAR.clone())
} else if scalar_ty == &IdType::int() {
Ok(OBJ_OF_SCAL_INT.clone())
} else if scalar_ty == &IdType::long() {
Ok(OBJ_OF_SCAL_LONG.clone())
} else if scalar_ty == &IdType::float() {
Ok(OBJ_OF_SCAL_FLOAT.clone())
} else if scalar_ty == &IdType::double() {
Ok(OBJ_OF_SCAL_DOUBLE.clone())
} else {
bail!("{} is not a scalar", scalar_ty.__str__())
}
}
/// Get the method that convert a scalar to its object conterpart (eg `int` to `java.lang.Integer` with
/// `Ljava/lang/Integer;->valueOf(I)Ljava/lang/Integer;`)
///
/// `scalar_ty` is the type of the scalar (eg `I`)
pub fn get_scalar_to_obj_method(scalar_ty: &IdType) -> Result<IdMethod> {
if scalar_ty == &IdType::boolean() {
Ok(SCAL_TO_OBJ_BOOL.clone())
} else if scalar_ty == &IdType::byte() {
Ok(SCAL_TO_OBJ_BYTE.clone())
} else if scalar_ty == &IdType::short() {
Ok(SCAL_TO_OBJ_SHORT.clone())
} else if scalar_ty == &IdType::char() {
Ok(SCAL_TO_OBJ_CHAR.clone())
} else if scalar_ty == &IdType::int() {
Ok(SCAL_TO_OBJ_INT.clone())
} else if scalar_ty == &IdType::long() {
Ok(SCAL_TO_OBJ_LONG.clone())
} else if scalar_ty == &IdType::float() {
Ok(SCAL_TO_OBJ_FLOAT.clone())
} else if scalar_ty == &IdType::double() {
Ok(SCAL_TO_OBJ_DOUBLE.clone())
} else {
bail!("{} is not a scalar", scalar_ty.__str__())
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,802 @@
use androscalpel::SmaliName;
use androscalpel::{IdMethod, IdType, Instruction, Method};
use anyhow::{bail, Context, Result};
use log::warn;
use crate::{dex_types::*, register_manipulation::*, runtime_data::*};
// Interesting stuff: https://cs.android.com/android/platform/superproject/main/+/main:art/runtime/verifier/reg_type.h;drc=83db0626fad8c6e0508754fffcbbd58e539d14a5;l=94
// https://cs.android.com/android/platform/superproject/main/+/main:art/runtime/verifier/method_verifier.cc;drc=83db0626fad8c6e0508754fffcbbd58e539d14a5;l=5328
pub fn transform_method(meth: &mut Method, ref_data: &RuntimeData) -> Result<()> {
// checking meth.annotations might be usefull at some point
//println!("{}", meth.descriptor.__str__());
let invoke_data = ref_data.get_invoke_data_for(&meth.descriptor);
let class_new_inst_data = ref_data.get_class_new_instance_data_for(&meth.descriptor);
let cnstr_new_inst_data = ref_data.get_cnstr_new_instance_data_for(&meth.descriptor);
let code = meth
.code
.as_ref()
.with_context(|| format!("Code not found in {}", meth.descriptor.__str__()))?;
// Get the available registers at the method level
let mut register_info = RegistersInfo::default();
// register_info.array_val is a wide reg, so need at least 0b1110 and 0b1111
if code.registers_size < 0b1111 {
register_info.array_val = code.registers_size as u8;
} else {
register_info.array_val = 0;
register_info.array_val_save = Some(code.registers_size);
}
if code.registers_size + 2 <= 0b1111 {
register_info.array_index = (code.registers_size + 2) as u8;
} else {
register_info.array_index = 0;
register_info.array_index_save = Some(code.registers_size + 2);
}
if code.registers_size + 3 <= 0b1111 {
register_info.array = (code.registers_size + 3) as u8;
} else {
register_info.array = 0;
register_info.array_save = Some(code.registers_size + 3);
}
register_info.first_arg = code.registers_size + 4;
register_info.nb_arg_reg = 0;
let regs_type = if register_info.array_val_save.is_some()
|| register_info.array_index_save.is_some()
|| register_info.array_save.is_some()
{
Some(meth.get_cfg()?.get_reg_types())
} else {
None
};
let mut new_insns = vec![];
let mut iter = code.insns.iter();
let mut current_addr_label: Option<String> = None;
while let Some(ins) = iter.next() {
match ins {
Instruction::InvokeVirtual { method, args }
if (method == &*MTH_INVOKE
|| method == &*CLASS_NEW_INST
|| method == &*CNSTR_NEW_INST)
&& current_addr_label.is_some() =>
{
let addr_label = current_addr_label.as_ref().unwrap();
let (pseudo_insns, move_ret) = get_move_result(iter.clone());
if move_ret.is_some() {
while move_ret.as_ref() != iter.next() {}
}
let end_label = if method == &*MTH_INVOKE {
format!("end_reflection_call_at_{}", "TODO_ADDR")
} else if method == &*CLASS_NEW_INST || method == &*CNSTR_NEW_INST {
format!("end_reflection_instanciation_at_{}", "TODO_ADDR")
} else {
panic!("Should not happen!")
};
let mut restore_reg = vec![];
if let Some(regs_type) = regs_type.as_ref() {
if (method == &*MTH_INVOKE && invoke_data.contains_key(addr_label))
|| (method == &*CLASS_NEW_INST
&& class_new_inst_data.contains_key(addr_label))
|| (method == &*CNSTR_NEW_INST
&& cnstr_new_inst_data.contains_key(addr_label))
{
let regs_type = regs_type.get(addr_label).unwrap();
let mut used_reg = args.clone();
match move_ret {
Some(Instruction::MoveResult { to }) => used_reg.push(to as u16),
Some(Instruction::MoveResultObject { to }) => used_reg.push(to as u16),
Some(Instruction::MoveResultWide { to }) => used_reg.push(to as u16),
_ => (),
}
match register_info.tmp_reserve_reg(&used_reg, regs_type) {
Ok((mut save_insns, restore_insns)) => {
restore_reg = restore_insns;
new_insns.append(&mut save_insns);
}
Err(err) => {
warn!(
"Failed to instrument reflection in {} at {}: {}",
method.__str__(),
addr_label,
err,
);
new_insns.push(ins.clone());
if let Some(move_ret) = move_ret.as_ref() {
for ins in pseudo_insns.iter() {
new_insns.push(ins.clone());
}
new_insns.push(move_ret.clone());
}
current_addr_label = None;
continue;
}
}
}
}
// TODO: recover from failure
if method == &*MTH_INVOKE {
for ref_data in invoke_data.get(addr_label).unwrap_or(&vec![]) {
for ins in get_invoke_block(
ref_data,
args.as_slice(),
&mut register_info,
&end_label,
move_ret.clone(),
)? {
new_insns.push(ins);
}
}
} else if method == &*CLASS_NEW_INST {
for ref_data in class_new_inst_data.get(addr_label).unwrap_or(&vec![]) {
for ins in get_class_new_inst_block(
ref_data,
args.as_slice(),
&mut register_info,
&end_label,
move_ret.clone(),
)? {
new_insns.push(ins);
}
}
} else if method == &*CNSTR_NEW_INST {
for ref_data in cnstr_new_inst_data.get(addr_label).unwrap_or(&vec![]) {
for ins in get_cnstr_new_inst_block(
ref_data,
args.as_slice(),
&mut register_info,
&end_label,
move_ret.clone(),
)? {
new_insns.push(ins);
}
}
} else {
panic!("Should not happen!")
};
new_insns.push(ins.clone());
if let Some(move_ret) = move_ret {
for ins in pseudo_insns.into_iter() {
new_insns.push(ins);
}
new_insns.push(move_ret);
}
let end_label = Instruction::Label { name: end_label };
new_insns.push(end_label.clone());
new_insns.append(&mut restore_reg);
current_addr_label = None;
}
Instruction::Label { name } if name.starts_with("THESEUS_ADDR_") => {
current_addr_label = Some(name.clone());
new_insns.push(ins.clone());
}
ins => {
if !ins.is_pseudo_ins() {
current_addr_label = None;
}
new_insns.push(ins.clone());
}
}
}
let ins_size = code.ins_size(meth);
let code = meth
.code
.as_mut()
.with_context(|| format!("Code not found in {}", meth.descriptor.__str__()))?;
code.insns = vec![];
// Start the method by moving the parameter to their registers pre-transformation.
let mut i = 0;
if !meth.is_static {
// Non static method take 'this' as first argument
code.insns.push(Instruction::MoveObject {
from: code.registers_size - ins_size + i + register_info.get_nb_added_reg(),
to: code.registers_size - ins_size + i,
});
i += 1;
}
for arg in &meth.descriptor.proto.get_parameters() {
if arg.is_class() || arg.is_array() {
code.insns.push(Instruction::MoveObject {
from: code.registers_size - ins_size + i + register_info.get_nb_added_reg(),
to: code.registers_size - ins_size + i,
});
i += 1;
} else if arg.is_long() || arg.is_double() {
code.insns.push(Instruction::MoveWide {
from: code.registers_size - ins_size + i + register_info.get_nb_added_reg(),
to: code.registers_size - ins_size + i,
});
i += 2;
} else {
code.insns.push(Instruction::Move {
from: code.registers_size - ins_size + i + register_info.get_nb_added_reg(),
to: code.registers_size - ins_size + i,
});
i += 1;
}
}
if i != ins_size {
warn!(
"Method {} argument do not match code ins_size ({})",
meth.descriptor.__str__(),
ins_size
);
}
// Add the new code
code.insns.append(&mut new_insns);
code.registers_size += register_info.get_nb_added_reg();
Ok(())
}
/// Return the MoveResult{,Wide,Object} associated to the last instruction of the iterator.
fn get_move_result<'a>(
iter: impl Iterator<Item = &'a Instruction>,
) -> (Vec<Instruction>, Option<Instruction>) {
let mut pseudo_insns = vec![];
for ins in iter {
/*
match ins {
Instruction::MoveResult { .. }
| Instruction::MoveResultWide { .. }
| Instruction::MoveResultObject { .. } => return (vec![], Some(ins.clone())),
_ => (), // break,
}*/
if ins.is_pseudo_ins() {
pseudo_insns.push(ins.clone());
} else if let Instruction::MoveResultObject { .. } = ins {
return (pseudo_insns, Some(ins.clone()));
} else {
break;
}
}
(vec![], None)
}
fn get_invoke_block(
ref_data: &ReflectionInvokeData,
invoke_arg: &[u16],
reg_inf: &mut RegistersInfo,
end_label: &str,
move_result: Option<Instruction>,
) -> Result<Vec<Instruction>> {
let (method_obj, obj_inst, arg_arr) = if let &[a, b, c] = invoke_arg {
(a, b, c)
} else {
bail!(
"Method;->invoke arg should have exactly 3 arguments, found {}",
invoke_arg.len()
);
};
let nb_args: usize = ref_data
.method
.proto
.get_parameters()
.iter()
.map(|ty| if ty.is_double() || ty.is_long() { 2 } else { 1 })
.sum();
if reg_inf.nb_arg_reg < nb_args as u16 + if ref_data.is_static { 0 } else { 1 } {
reg_inf.nb_arg_reg = nb_args as u16 + if ref_data.is_static { 0 } else { 1 };
}
let abort_label = format!(
"end_static_call_to_{}_at_{:08X}",
ref_data.method.try_to_smali()?,
ref_data.addr
);
let mut insns = test_method(
method_obj,
ref_data.method.clone(),
abort_label.clone(),
reg_inf,
);
if !ref_data.is_static {
// Move 'this' to fist arg
// We do a small detour to `reg_inf.array_val` because we need a u8 reg to down cast the
// Object reference to the right Class
insns.push(Instruction::MoveObject {
from: obj_inst,
to: reg_inf.array_val as u16,
});
insns.push(Instruction::CheckCast {
reg: reg_inf.array_val,
lit: ref_data.method.class_.clone(),
});
insns.push(Instruction::MoveObject {
from: reg_inf.array_val as u16,
to: reg_inf.first_arg,
});
}
insns.append(&mut get_args_from_obj_arr(
&ref_data.method.proto.get_parameters(),
arg_arr,
reg_inf.first_arg + if ref_data.is_static { 0 } else { 1 },
reg_inf,
));
if ref_data.is_static {
insns.push(Instruction::InvokeStatic {
method: ref_data.method.clone(),
args: (reg_inf.first_arg..reg_inf.first_arg + nb_args as u16).collect(),
});
} else {
insns.push(Instruction::InvokeVirtual {
method: ref_data.method.clone(),
args: (reg_inf.first_arg..reg_inf.first_arg + 1 + nb_args as u16).collect(),
});
}
if let Some(move_result) = move_result {
let ret_ty = ref_data.method.proto.get_return_type();
let res_reg = if let Instruction::MoveResultObject { to } = &move_result {
*to
} else {
panic!(
"`move_result` shloud always be a MoveResultObject, found {}",
move_result.__str__()
)
};
if ret_ty.is_class() || ret_ty.is_array() {
insns.push(move_result);
} else if ret_ty.is_double() || ret_ty.is_long() {
insns.push(Instruction::MoveResultWide {
to: reg_inf.array_val,
});
insns.push(Instruction::InvokeStatic {
method: get_scalar_to_obj_method(&ret_ty).unwrap(),
args: vec![reg_inf.array_val as u16],
});
insns.push(move_result);
insns.push(Instruction::CheckCast {
reg: res_reg,
lit: OBJECT_TY.clone(),
});
} else {
insns.push(Instruction::MoveResult {
to: reg_inf.array_val,
});
insns.push(Instruction::InvokeStatic {
method: get_scalar_to_obj_method(&ret_ty).unwrap(),
args: vec![reg_inf.array_val as u16],
});
insns.push(move_result);
insns.push(Instruction::CheckCast {
reg: res_reg,
lit: OBJECT_TY.clone(),
});
}
}
insns.push(Instruction::Goto {
label: end_label.to_string(),
});
insns.push(Instruction::Label { name: abort_label });
// We need a few u8 regs here. For now, we assumes we work with less than 256 reg.
Ok(insns)
}
/// Generate bytecode that put the arguments of types `params` from an [java.lang.Object to
/// types consecutive registers starting at `first_arg_reg`.
/// `first_arg_reg` sould be `reg_inf.first_arg` or `reg_inf.first_arg+1` depending on if this
/// is for a static or virtual call.
fn get_args_from_obj_arr(
params: &[IdType],
array_reg: u16,
first_arg_reg: u16,
reg_inf: &mut RegistersInfo,
) -> Vec<Instruction> {
let mut insns = vec![];
let mut restore_array = vec![];
let mut reg_count = 0;
let array_reg = if array_reg <= 0b1111 {
array_reg as u8
} else {
insns.push(Instruction::MoveObject {
from: array_reg,
to: reg_inf.array as u16,
});
restore_array.push(Instruction::MoveObject {
from: reg_inf.array as u16,
to: array_reg,
});
reg_inf.array
};
for (i, param) in params.iter().enumerate() {
insns.push(Instruction::Const {
reg: reg_inf.array_index,
lit: i as i32,
});
insns.push(Instruction::AGetObject {
dest: reg_inf.array_val,
arr: array_reg,
idx: reg_inf.array_index,
});
if param.is_class() || param.is_array() {
insns.push(Instruction::CheckCast {
reg: reg_inf.array_val,
lit: param.clone(),
});
insns.push(Instruction::MoveObject {
from: reg_inf.array_val as u16,
to: first_arg_reg + reg_count,
});
reg_count += 1;
} else if param.is_double() || param.is_long() {
insns.push(Instruction::CheckCast {
reg: reg_inf.array_val,
lit: get_obj_of_scalar(param).unwrap(),
});
insns.push(Instruction::InvokeVirtual {
method: get_obj_to_scalar_method(param).unwrap(),
args: vec![reg_inf.array_val as u16],
});
insns.push(Instruction::MoveResultWide {
to: reg_inf.array_val,
});
insns.push(Instruction::MoveWide {
from: reg_inf.array_val as u16,
to: first_arg_reg + reg_count,
});
reg_count += 2;
} else {
insns.push(Instruction::CheckCast {
reg: reg_inf.array_val,
lit: get_obj_of_scalar(param).unwrap(),
});
insns.push(Instruction::InvokeVirtual {
method: get_obj_to_scalar_method(param).unwrap(),
args: vec![reg_inf.array_val as u16],
});
insns.push(Instruction::MoveResult {
to: reg_inf.array_val,
});
insns.push(Instruction::Move {
from: reg_inf.array_val as u16,
to: first_arg_reg + reg_count,
});
reg_count += 1;
}
}
insns.append(&mut restore_array);
insns
}
/// Generate bytecode that test if a `java.lang.reflect.Method` is equal to an [`IdMethod`]
///
/// - `method_obj_reg`: the register containing the `java.lang.reflect.Method`
/// - `id_method`: the expected [`IdMethod`].
/// - `abort_label`: the label where to jump if the method does not match `id_method`.
fn test_method(
method_obj_reg: u16,
id_method: IdMethod,
abort_label: String,
reg_inf: &mut RegistersInfo,
) -> Vec<Instruction> {
// Check for arg type
let mut insns = vec![
Instruction::InvokeVirtual {
method: MTH_GET_PARAMS_TY.clone(),
args: vec![method_obj_reg],
},
Instruction::MoveResultObject { to: reg_inf.array },
];
// First check the number of args
// TODO: remove, test
// --------------------
insns.append(&mut vec![
Instruction::ArrayLength {
dest: reg_inf.array_index,
arr: reg_inf.array,
},
Instruction::Const {
reg: reg_inf.array_val,
lit: id_method.proto.get_parameters().len() as i32,
},
Instruction::IfNe {
a: reg_inf.array_index,
b: reg_inf.array_val,
label: abort_label.clone(),
},
]);
// then the type of each arg
for (i, param) in id_method.proto.get_parameters().into_iter().enumerate() {
insns.push(Instruction::Const {
reg: reg_inf.array_index,
lit: i as i32,
});
insns.push(Instruction::AGetObject {
dest: reg_inf.array_val,
arr: reg_inf.array,
idx: reg_inf.array_index,
});
insns.push(Instruction::ConstClass {
reg: reg_inf.array_index, // wrong name, but available for tmp val
lit: param,
});
insns.push(Instruction::IfNe {
a: reg_inf.array_index,
b: reg_inf.array_val,
label: abort_label.clone(),
})
}
insns.append(&mut vec![
// Check the runtime method is the right one
// Check Name
Instruction::InvokeVirtual {
method: MTH_GET_NAME.clone(),
args: vec![method_obj_reg],
},
Instruction::MoveResultObject {
to: reg_inf.array_index, // wrong name, but available for tmp val
},
Instruction::ConstString {
reg: reg_inf.array_val, // wrong name, but available for tmp val
lit: id_method.name.clone(),
},
Instruction::InvokeVirtual {
method: STR_EQ.clone(),
args: vec![reg_inf.array_index as u16, reg_inf.array_val as u16],
},
Instruction::MoveResult {
to: reg_inf.array_index, // wrong name, but available for tmp val
},
Instruction::IfEqZ {
a: reg_inf.array_index,
label: abort_label.clone(),
},
// Check Return Type
Instruction::InvokeVirtual {
method: MTH_GET_RET_TY.clone(),
args: vec![method_obj_reg],
},
Instruction::MoveResultObject {
to: reg_inf.array_index, // wrong name, but available for tmp val
},
Instruction::ConstClass {
reg: reg_inf.array_val, // wrong name, but available for tmp val
lit: id_method.proto.get_return_type(),
},
Instruction::IfNe {
a: reg_inf.array_index,
b: reg_inf.array_val,
label: abort_label.clone(),
},
// Check Declaring Type
Instruction::InvokeVirtual {
method: MTH_GET_DEC_CLS.clone(),
args: vec![method_obj_reg],
},
Instruction::MoveResultObject {
to: reg_inf.array_index, // wrong name, but available for tmp val
},
Instruction::ConstClass {
reg: reg_inf.array_val, // wrong name, but available for tmp val
lit: id_method.class_.clone(),
},
Instruction::IfNe {
a: reg_inf.array_index,
b: reg_inf.array_val,
label: abort_label.clone(),
},
]);
insns
}
fn get_cnstr_new_inst_block(
ref_data: &ReflectionCnstrNewInstData,
invoke_arg: &[u16],
reg_inf: &mut RegistersInfo,
end_label: &str,
move_result: Option<Instruction>,
) -> Result<Vec<Instruction>> {
let (cnst_reg, arg_arr) = if let &[a, b] = invoke_arg {
(a, b)
} else {
bail!(
"Method;->invoke arg should have exactrly 2 arguments, found {}",
invoke_arg.len()
);
};
if cnst_reg > u8::MAX as u16 {
// TODO
bail!("Cannot transform instantiation calls to a class stored in 16 bits register");
}
if reg_inf.first_arg > u8::MAX as u16 {
// TODO
bail!("Cannot transform instantiation calls to a class with first argument register greater than 255.");
}
//let cnst_reg = cnst_reg as u8;
let nb_args = ref_data.constructor.proto.get_parameters().len();
if reg_inf.nb_arg_reg < nb_args as u16 + 1 {
reg_inf.nb_arg_reg = nb_args as u16 + 1;
}
let abort_label = format!(
"end_static_instance_with_{}_at_{}",
ref_data.constructor.try_to_smali()?,
"TODO_ADDR"
);
let mut insns = test_cnstr(
cnst_reg,
ref_data.constructor.clone(),
abort_label.clone(),
reg_inf,
);
insns.append(&mut get_args_from_obj_arr(
&ref_data.constructor.proto.get_parameters(),
arg_arr,
reg_inf.first_arg + 1,
reg_inf,
));
if reg_inf.first_arg < u8::MAX as u16 {
insns.push(Instruction::NewInstance {
reg: reg_inf.first_arg as u8,
lit: ref_data.constructor.class_.clone(),
});
} else {
insns.push(Instruction::NewInstance {
reg: reg_inf.array_val,
lit: ref_data.constructor.class_.clone(),
});
insns.push(Instruction::MoveObject {
from: reg_inf.array_val as u16,
to: reg_inf.first_arg,
});
}
insns.push(Instruction::InvokeDirect {
method: ref_data.constructor.clone(),
args: (reg_inf.first_arg..reg_inf.first_arg + nb_args as u16 + 1).collect(),
});
if let Some(Instruction::MoveResultObject { to }) = move_result {
insns.push(Instruction::MoveObject {
from: reg_inf.first_arg,
to: to as u16,
});
}
insns.push(Instruction::Goto {
label: end_label.to_string(),
});
insns.push(Instruction::Label { name: abort_label });
Ok(insns)
}
/// Generate bytecode that test if a `java.lang.reflect.Constructor` is equal to an [`IdMethod`]
///
/// - `method_obj_reg`: the register containing the `java.lang.reflect.Method`
/// - `id_method`: the expected [`IdMethod`].
/// - `abort_label`: the label where to jump if the method does not match `id_method`.
fn test_cnstr(
cnst_reg: u16,
id_method: IdMethod,
abort_label: String,
reg_inf: &mut RegistersInfo,
) -> Vec<Instruction> {
// Check for arg type
let mut insns = vec![
Instruction::InvokeVirtual {
method: CNSTR_GET_PARAMS_TY.clone(),
args: vec![cnst_reg],
},
Instruction::MoveResultObject { to: reg_inf.array },
// First check the number of args
Instruction::ArrayLength {
dest: reg_inf.array_index,
arr: reg_inf.array,
},
Instruction::Const {
reg: reg_inf.array_val,
lit: id_method.proto.get_parameters().len() as i32,
},
Instruction::IfNe {
a: reg_inf.array_index,
b: reg_inf.array_val,
label: abort_label.clone(),
},
];
// then the type of each arg
for (i, param) in id_method.proto.get_parameters().into_iter().enumerate() {
insns.push(Instruction::Const {
reg: reg_inf.array_index,
lit: i as i32,
});
insns.push(Instruction::AGetObject {
dest: reg_inf.array_val,
arr: reg_inf.array,
idx: reg_inf.array_index,
});
insns.push(Instruction::ConstClass {
reg: reg_inf.array_index, // wrong name, but available for tmp val
lit: param,
});
insns.push(Instruction::IfNe {
a: reg_inf.array_index,
b: reg_inf.array_val,
label: abort_label.clone(),
})
}
insns.append(&mut vec![
// Check Declaring Type
Instruction::InvokeVirtual {
method: CNSTR_GET_DEC_CLS.clone(),
args: vec![cnst_reg],
},
Instruction::MoveResultObject {
to: reg_inf.array_index, // wrong name, but available for tmp val
},
Instruction::ConstClass {
reg: reg_inf.array_val, // wrong name, but available for tmp val
lit: id_method.class_.clone(),
},
Instruction::IfNe {
a: reg_inf.array_index,
b: reg_inf.array_val,
label: abort_label.clone(),
},
]);
insns
}
fn get_class_new_inst_block(
ref_data: &ReflectionClassNewInstData,
invoke_arg: &[u16],
reg_inf: &mut RegistersInfo,
end_label: &str,
move_result: Option<Instruction>,
) -> Result<Vec<Instruction>> {
let class_reg = if let &[a] = invoke_arg {
a
} else {
bail!(
"Method;->invoke arg should have exactrly 3 arguments, found {}",
invoke_arg.len()
);
};
if !ref_data.constructor.proto.get_parameters().is_empty() {
bail!(
"Class.newInstance can only initialize instance with zero args constructor, found {}",
ref_data.constructor.__str__()
);
}
if class_reg > u8::MAX as u16 {
// TODO
bail!("Cannot transform instantiation calls to a class stored in 16 bits register");
}
let class_reg = class_reg as u8;
let abort_label = format!(
"end_static_instance_with_{}_at_{}",
ref_data.constructor.try_to_smali()?,
"TODO_ADDR"
);
let obj_reg = match move_result {
Some(Instruction::MoveResultObject { to }) => to,
_ => reg_inf.array_index,
};
Ok(vec![
Instruction::ConstClass {
reg: reg_inf.array_index, // wrong name, but available for tmp val
lit: ref_data.constructor.class_.clone(),
},
Instruction::IfNe {
a: reg_inf.array_index,
b: class_reg,
label: abort_label.clone(),
},
Instruction::NewInstance {
reg: obj_reg,
lit: ref_data.constructor.class_.clone(),
},
Instruction::InvokeDirect {
method: ref_data.constructor.clone(),
args: vec![obj_reg as u16],
},
Instruction::Goto {
label: end_label.to_string(),
},
Instruction::Label { name: abort_label },
])
}

View file

@ -0,0 +1,408 @@
use androscalpel::{Instruction, RegType};
use anyhow::{bail, Result};
/// Information about the register used.
///
/// `array_index` and `array` are simple 4 bits register (that is, registers between 0 and 15
/// included that store 32 bit scalar or object depending on the situation) and `pub array_val` is
/// a wide 4 bit register (that is, a register between 0 and 15 included plus the next register, so
/// that it can store 64 bits sclarars in addition to 32 bits scalars and objects depending on the
/// situation). In theory, those should be encoded in u4 types, but rust does not have those.
///
/// Because we can rarely reserved 4 bits registers for a whole method, `array_index_save`, `array_val_save`
/// and `array_save` are 16 bits registers where we can save the previous contant of the registers
/// before using them.
///
/// `first_arg` is the first register of plage of `nb_arg_reg` use to invoke method.
#[derive(PartialEq, Debug, Default)]
pub(crate) struct RegistersInfo {
pub array_index: u8,
pub array: u8,
pub array_val: u8, // Reserver 2 reg here, for wide operation
pub array_index_save: Option<u16>,
pub array_save: Option<u16>,
pub array_val_save: Option<u16>, // Reserver 2 reg here, for wide operation
pub first_arg: u16,
pub nb_arg_reg: u16,
}
impl RegistersInfo {
pub fn get_nb_added_reg(&self) -> u16 {
self.nb_arg_reg + 4
}
/// Set the values for `array_index`, `array` and `array_val` when the methode already use more
/// than 12 registers. This means already used registers need to be saved in order to be used.
/// The first instruction vec return contains the instructions to save the registers, the
/// second the instructions to restore the registers to their old values.
///
/// `used_reg` is a list of register that cannot be used because directly used by the invoke
/// instruction or the move-result ibstruction.
/// `regs_type` is the type of the registers at this point in the code of the method.
pub fn tmp_reserve_reg(
&mut self,
used_reg: &[u16],
regs_type: &[RegType],
) -> Result<(Vec<Instruction>, Vec<Instruction>)> {
let mut used_reg = used_reg.to_vec();
let mut save_reg_insns = vec![];
let mut restore_reg_insns = vec![];
if let Some(reg_save) = self.array_val_save {
let mut found = false;
if reg_save <= 0b1110 {
// This should not happend, but who knows?
found = true;
}
if !found {
for i in 0..15 {
if i >= regs_type.len() {
break;
}
if !used_reg.contains(&(i as u16))
&& !used_reg.contains(&((i + 1) as u16))
&& regs_type[i] == RegType::FirstWideScalar
&& regs_type[i + 1] == RegType::SecondWideScalar
{
self.array_val = i as u8;
used_reg.push(i as u16);
used_reg.push((i + 1) as u16);
save_reg_insns.push(Instruction::MoveWide {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::MoveWide {
from: reg_save,
to: i as u16,
});
found = true;
break;
}
}
}
if !found {
for i in 0..15 {
if i >= regs_type.len() {
break;
}
if !used_reg.contains(&(i as u16))
&& !used_reg.contains(&((i + 1) as u16))
&& (regs_type[i] == RegType::Object
|| regs_type[i] == RegType::SimpleScalar
|| regs_type[i] == RegType::FirstWideScalar
|| regs_type[i] == RegType::SecondWideScalar
|| regs_type[i] == RegType::Undefined)
&& (regs_type[i + 1] == RegType::Object
|| regs_type[i + 1] == RegType::SimpleScalar
|| regs_type[i + 1] == RegType::FirstWideScalar
|| regs_type[i + 1] == RegType::SecondWideScalar
|| regs_type[i + 1] == RegType::Undefined)
{
self.array_val = i as u8;
used_reg.push(i as u16);
used_reg.push((i + 1) as u16);
if regs_type[i] == RegType::Object {
save_reg_insns.push(Instruction::MoveObject {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::MoveObject {
from: reg_save,
to: i as u16,
});
} else if regs_type[i] == RegType::SimpleScalar
|| regs_type[i] == RegType::FirstWideScalar
|| regs_type[i] == RegType::SecondWideScalar
{
save_reg_insns.push(Instruction::Move {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::Move {
from: reg_save,
to: i as u16,
});
} // else RegType::Undefined, do nothing, just use it
if regs_type[i + 1] == RegType::Object {
save_reg_insns.push(Instruction::MoveObject {
from: (i + 1) as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::MoveObject {
from: reg_save,
to: (i + 1) as u16,
});
} else if regs_type[i + 1] == RegType::SimpleScalar
|| regs_type[i] == RegType::FirstWideScalar
|| regs_type[i] == RegType::SecondWideScalar
{
save_reg_insns.push(Instruction::Move {
from: (i + 1) as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::Move {
from: reg_save,
to: (i + 1) as u16,
});
} // else RegType::Undefined, do nothing, just use it
found = true;
break;
}
}
}
// Last resort
if !found {
for i in 0..15 {
if i >= regs_type.len() {
break;
}
if !used_reg.contains(&(i as u16))
&& !used_reg.contains(&((i + 1) as u16))
&& (regs_type[i] == RegType::Object
|| regs_type[i] == RegType::SimpleScalar
|| regs_type[i] == RegType::FirstWideScalar
|| regs_type[i] == RegType::SecondWideScalar
|| regs_type[i] == RegType::Any
|| regs_type[i] == RegType::Undefined)
&& (regs_type[i + 1] == RegType::Object
|| regs_type[i + 1] == RegType::SimpleScalar
|| regs_type[i + 1] == RegType::FirstWideScalar
|| regs_type[i + 1] == RegType::SecondWideScalar
|| regs_type[i] == RegType::Any
|| regs_type[i + 1] == RegType::Undefined)
{
self.array_val = i as u8;
used_reg.push(i as u16);
used_reg.push((i + 1) as u16);
if regs_type[i] == RegType::Object {
save_reg_insns.push(Instruction::MoveObject {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::MoveObject {
from: reg_save,
to: i as u16,
});
} else if regs_type[i] == RegType::SimpleScalar
|| regs_type[i] == RegType::FirstWideScalar
|| regs_type[i] == RegType::SecondWideScalar
|| regs_type[i] == RegType::Any
{
save_reg_insns.push(Instruction::Move {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::Move {
from: reg_save,
to: i as u16,
});
} // else RegType::Undefined, do nothing, just use it
if regs_type[i + 1] == RegType::Object {
save_reg_insns.push(Instruction::MoveObject {
from: (i + 1) as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::MoveObject {
from: reg_save,
to: (i + 1) as u16,
});
} else if regs_type[i + 1] == RegType::SimpleScalar
|| regs_type[i] == RegType::FirstWideScalar
|| regs_type[i] == RegType::SecondWideScalar
{
save_reg_insns.push(Instruction::Move {
from: (i + 1) as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::Move {
from: reg_save,
to: (i + 1) as u16,
});
} // else RegType::Undefined, do nothing, just use it
found = true;
break;
}
}
if !found {
bail!("Could not found enough usable registers to patch the method")
}
}
}
if let Some(reg_save) = self.array_index_save {
let mut found = false;
if reg_save <= 0b1111 {
// This should not happend, but who knows?
found = true;
}
if !found {
for i in 0..15 {
if i >= regs_type.len() {
break;
}
if !used_reg.contains(&(i as u16)) && regs_type[i] == RegType::SimpleScalar {
self.array_index = i as u8;
used_reg.push(i as u16);
save_reg_insns.push(Instruction::Move {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::Move {
from: reg_save,
to: i as u16,
});
found = true;
break;
}
}
}
if !found {
for i in 0..15 {
if i >= regs_type.len() {
break;
}
if !used_reg.contains(&(i as u16))
&& (regs_type[i] == RegType::Object
|| regs_type[i] == RegType::FirstWideScalar
|| regs_type[i] == RegType::SecondWideScalar
|| regs_type[i] == RegType::Undefined)
{
self.array_index = i as u8;
used_reg.push(i as u16);
if regs_type[i] == RegType::Object {
save_reg_insns.push(Instruction::MoveObject {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::MoveObject {
from: reg_save,
to: i as u16,
});
} else if regs_type[i] == RegType::FirstWideScalar
|| regs_type[i] == RegType::SecondWideScalar
{
save_reg_insns.push(Instruction::Move {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::Move {
from: reg_save,
to: i as u16,
});
} // else RegType::Undefined, do nothing, just use it
found = true;
break;
}
}
}
// Last resort
if !found {
for i in 0..15 {
if i >= regs_type.len() {
break;
}
if !used_reg.contains(&(i as u16)) && regs_type[i] == RegType::Any {
self.array_index = i as u8;
used_reg.push(i as u16);
save_reg_insns.push(Instruction::Move {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::Move {
from: reg_save,
to: i as u16,
});
found = true;
break;
}
}
if !found {
bail!("Could not found enough usable registers to patch the method")
}
}
}
if let Some(reg_save) = self.array_save {
let mut found = false;
if reg_save <= 0b1111 {
// This should not happend, but who knows?
found = true;
}
if !found {
for i in 0..15 {
if i >= regs_type.len() {
break;
}
if !used_reg.contains(&(i as u16)) && regs_type[i] == RegType::Object {
self.array = i as u8;
used_reg.push(i as u16);
save_reg_insns.push(Instruction::MoveObject {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::MoveObject {
from: reg_save,
to: i as u16,
});
found = true;
break;
}
}
}
if !found {
for i in 0..15 {
if i >= regs_type.len() {
break;
}
if !used_reg.contains(&(i as u16))
&& (regs_type[i] == RegType::SimpleScalar
|| regs_type[i] == RegType::FirstWideScalar
|| regs_type[i] == RegType::SecondWideScalar
|| regs_type[i] == RegType::Undefined)
{
self.array = i as u8;
used_reg.push(i as u16);
if regs_type[i] == RegType::FirstWideScalar
|| regs_type[i] == RegType::SecondWideScalar
|| regs_type[i] == RegType::SimpleScalar
{
save_reg_insns.push(Instruction::Move {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::Move {
from: reg_save,
to: i as u16,
});
} // else RegType::Undefined, do nothing, just use it
found = true;
break;
}
}
}
// Last resort
if !found {
for i in 0..15 {
if i >= regs_type.len() {
break;
}
if !used_reg.contains(&(i as u16)) && regs_type[i] == RegType::Any {
self.array = i as u8;
used_reg.push(i as u16);
save_reg_insns.push(Instruction::Move {
from: i as u16,
to: reg_save,
});
restore_reg_insns.push(Instruction::Move {
from: reg_save,
to: i as u16,
});
found = true;
break;
}
}
if !found {
bail!("Could not found enough usable registers to patch the method")
}
}
}
Ok((save_reg_insns, restore_reg_insns))
}
}

138
patcher/src/runtime_data.rs Normal file
View file

@ -0,0 +1,138 @@
use androscalpel::{IdMethod, IdType};
use std::collections::{HashMap, HashSet};
use std::path::PathBuf;
use serde::{Deserialize, Serialize};
#[derive(Clone, PartialEq, Debug, Deserialize, Serialize)]
pub struct RuntimeData {
pub invoke_data: Vec<ReflectionInvokeData>,
pub class_new_inst_data: Vec<ReflectionClassNewInstData>,
pub cnstr_new_inst_data: Vec<ReflectionCnstrNewInstData>,
pub dyn_code_load: Vec<DynamicCodeLoadingData>,
}
impl RuntimeData {
/// List all the methods that made reflection calls.
pub fn get_method_referenced(&self) -> HashSet<IdMethod> {
self.invoke_data
.iter()
.map(|data| data.caller_method.clone())
.chain(
self.class_new_inst_data
.iter()
.map(|data| data.caller_method.clone())
.chain(
self.cnstr_new_inst_data
.iter()
.map(|data| data.caller_method.clone()),
),
)
.collect()
}
/// List all data collected from called to `java.lang.reflect.Method.invoke()` made by
/// `method`.
pub fn get_invoke_data_for(
&self,
method: &IdMethod,
) -> HashMap<String, Vec<ReflectionInvokeData>> {
let mut data = HashMap::new();
for val in self
.invoke_data
.iter()
.filter(|data| &data.caller_method == method)
{
let key = format!("THESEUS_ADDR_{:08X}", val.addr);
let entry = data.entry(key).or_insert(vec![]);
entry.push(val.clone());
}
data
}
/// List all data collected from called to `java.lang.Class.newInstance()` made by
/// `method`.
pub fn get_class_new_instance_data_for(
&self,
method: &IdMethod,
) -> HashMap<String, Vec<ReflectionClassNewInstData>> {
let mut data = HashMap::new();
for val in self
.class_new_inst_data
.iter()
.filter(|data| &data.caller_method == method)
{
let key = format!("THESEUS_ADDR_{:08X}", val.addr);
let entry = data.entry(key).or_insert(vec![]);
entry.push(val.clone());
}
data
}
/// List all data collected from called to `java.lang.reflect.Constructor.newInstance()` made by
/// `method`.
pub fn get_cnstr_new_instance_data_for(
&self,
method: &IdMethod,
) -> HashMap<String, Vec<ReflectionCnstrNewInstData>> {
let mut data = HashMap::new();
for val in self
.cnstr_new_inst_data
.iter()
.filter(|data| &data.caller_method == method)
{
let key = format!("THESEUS_ADDR_{:08X}", val.addr);
let entry = data.entry(key).or_insert(vec![]);
entry.push(val.clone());
}
data
}
}
/// Structure storing the runtime information of a reflection call using
/// `java.lang.reflect.Method.invoke()`.
#[derive(Clone, PartialEq, Debug, Deserialize, Serialize)]
pub struct ReflectionInvokeData {
/// The method called by `java.lang.reflect.Method.invoke()`
pub method: IdMethod,
/// The method calling `java.lang.reflect.Method.invoke()`
pub caller_method: IdMethod,
/// Address where the call to `java.lang.reflect.Method.invoke()` was made in `caller_method`.
pub addr: usize,
/// If the method is static (static method don't take 'this' as argument)
pub is_static: bool,
// TODO: type of invoke?
}
/// Structure storing the runtime information of a reflection instanciation using
/// `java.lang.Class.newInstance()`.
#[derive(Clone, PartialEq, Debug, Deserialize, Serialize)]
pub struct ReflectionClassNewInstData {
/// The constructor called by `java.lang.Class.newInstance()`
pub constructor: IdMethod,
/// The method calling `java.lang.Class.newInstance()`
pub caller_method: IdMethod,
/// Address where the call to `java.lang.Class.newInstance()` was made in `caller_method`.
pub addr: usize,
}
/// Structure storing the runtime information of a reflection instanciation using
/// `java.lang.reflect.Constructor.newInstance()`.
#[derive(Clone, PartialEq, Debug, Deserialize, Serialize)]
pub struct ReflectionCnstrNewInstData {
/// The constructor calleb by `java.lang.reflect.Constructor.newInstance()`
pub constructor: IdMethod,
/// The method calling `java.lang.reflect.Constructor.newInstance()`
pub caller_method: IdMethod,
/// Address where the call to `java.lang.Class.newInstance()` was made in `caller_method`.
pub addr: usize,
}
/// Structure storing the runtime information of a dynamic code loading.
#[derive(Clone, PartialEq, Debug, Deserialize, Serialize)]
pub struct DynamicCodeLoadingData {
/// The type of the class loader used to load the code.
pub classloader_class: IdType,
/// An identifier for the classloader, valid for one specific run of the application.
pub classloader: String,
/// The path to the files storing the .dex/.apk/other bytecode loaded.
pub files: Vec<PathBuf>,
}